Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 9(6): 3348-3355, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37195453

RESUMEN

Pirfenidone has been shown to reduce fibrosis and modulate inflammation associated with conditions from pulmonary fibrosis to rheumatoid arthritis. It may also be useful for ocular diseases as well. However, for pirfenidone to be effective, it needs to be delivered to the tissue of interest, which, in the case of the eye, in particular, motivates the need for a system that permits local, long-term delivery to address the continuing pathology of the, condition. We investigated a set of delivery systems to determine the impact of encapsulation materials on the loading and delivery of pirfenidone. While the polyester system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles exhibited higher loading than a polyurethane-based nanocapsule system, the delivery was short, with 85% of the drug being released in 24 h and no measurable drug after 7 days. Addition of different poloxamers impacted the loading but not the release of the drug. In contrast, the polyurethane nanocapsule system delivered 60% of the drug over the first 24 h and the remainder over the next 50 days. Furthermore, the polyurethane system permitted on-demand delivery via ultrasound. Being able to tune the amount of drug delivered via ultrasound has the potential to tailor the delivery of pirfenidone to modulate inflammation and fibrosis. We used a fibroblast scratch assay to confirm the bioactivity of the released drug. This work provides multiple platforms for the delivery of pirfenidone locally and over time in both passive and on-demand formulations with the potential to address a range of inflammatory and fibrotic conditions.


Asunto(s)
Nanocápsulas , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Poliuretanos , Cicatriz , Poliésteres , Inflamación
2.
Cells ; 12(2)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36672172

RESUMEN

Microtubules are key players in several stages of the cell cycle and are also involved in the transportation of cellular organelles. Microtubules are polymerized by α/ß tubulin dimers with a highly dynamic feature, especially at the plus ends of the microtubules. Therefore, understanding the interactions among tubulins is crucial for characterizing microtubule dynamics. Studying microtubule dynamics can help researchers make advances in the treatment of neurodegenerative diseases and cancer. In this study, we utilize a series of computational approaches to study the electrostatic interactions at the binding interfaces of tubulin monomers. Our study revealed that among all the four types of tubulin-tubulin binding modes, the electrostatic attractive interactions in the α/ß tubulin binding are the strongest while the interactions of α/α tubulin binding in the longitudinal direction are the weakest. Our calculations explained that due to the electrostatic interactions, the tubulins always preferred to form α/ß tubulin dimers. The interactions between two protofilaments are the weakest. Thus, the protofilaments are easily separated from each other. Furthermore, the important residues involved in the salt bridges at the binding interfaces of the tubulins are identified, which illustrates the details of the interactions in the microtubule. This study elucidates some mechanistic details of microtubule dynamics and also identifies important residues at the binding interfaces as potential drug targets for the inhibition of cancer cells.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Electricidad Estática , Microtúbulos/metabolismo
3.
Comput Struct Biotechnol J ; 20: 4305-4314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051882

RESUMEN

Kinesins are microtubule-based motor proteins that play important roles ranging from intracellular transport to cell division. Human Kinesin-5 (Eg5) is essential for mitotic spindle assembly during cell division. By combining molecular dynamics (MD) simulations with other multi-scale computational approaches, we systematically studied the interaction between Eg5 and the microtubule. We find the electrostatic feature on the motor domains of Eg5 provides attractive interactions to the microtubule. Additionally, the folding and binding energy analysis reveals that the Eg5 motor domain performs its functions best when in a weak acidic environment. Molecular dynamics analyses of hydrogen bonds and salt bridges demonstrate that, on the binding interfaces of Eg5 and the tubulin heterodimer, salt bridges play the most significant role in holding the complex. The salt bridge residues on the binding interface of Eg5 are mostly positive, while salt bridge residues on the binding interface of tubulin heterodimer are mostly negative. Such salt bridge residue distribution is consistent with electrostatic potential calculations. In contrast, the interface between α and ß-tubulins is dominated by hydrogen bonds rather than salt bridges. Compared to the Eg5/α-tubulin interface, the Eg5/ß-tubulin interface has a greater number of salt bridges and higher occupancy for salt bridges. This asymmetric salt bridge distribution may play a significant role in Eg5's directionality. The residues involved in hydrogen bonds and salt bridges are identified in this work and may be helpful for anticancer drug design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA