Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570539

RESUMEN

A composite based on calcium sulphate hemihydrate enhanced with Zn- or B-doped hydroxyapatite nanoparticles was fabricated and evaluated for bone graft applications. The investigations of their structural and morphological properties were performed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) spectroscopy techniques. To study the bioactive properties of the obtained composites, soaking tests in simulated body fluid (SBF) were performed. The results showed that the addition of 2% Zn results in an increase of 2.27% in crystallinity, while the addition of boron causes an increase of 5.61% compared to the undoped HAp sample. The crystallite size was found to be 10.69 ± 1.59 nm for HAp@B, and in the case of HAp@Zn, the size reaches 16.63 ± 1.83 nm, compared to HAp, whose crystallite size value was 19.44 ± 3.13 nm. The mechanical resistance of the samples doped with zinc was the highest and decreased by about 6% after immersion in SBF. Mixing HAp nanoparticles with gypsum improved cell viability compared to HAp for all concentrations (except for 200 µg/mL). Cell density decreased with increasing nanoparticle concentration, compared to gypsum, where the cell density was not significantly affected. The degree of cellular differentiation of osteoblast-type cells was more accentuated in the case of samples treated with G+HAp@B nanoparticles compared to HAp@B. Cell viability in these samples decreased inversely proportionally to the concentration of administered nanoparticles. From the point of view of cell density, this confirmed the quantitative data.

2.
Materials (Basel) ; 16(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37629839

RESUMEN

Tissue engineering requires new materials that can be used to replace damaged bone parts. Since hydroxyapatite, currently widely used, has low mechanical resistance, silicate ceramics can represent an alternative. The aim of this study was to obtain porous ceramics based on diopside (CaMgSi2O6) and akermanite (Ca2MgSi2O7) obtained at low sintering temperatures. The powder synthesized by the sol-gel method was pressed in the presence of a porogenic agent represented by commercial sucrose in order to create the desired porosity. The ceramic bodies obtained after sintering thermal treatment at 1050 °C and 1250 °C, respectively, were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) to determine the chemical composition. The open porosity was situated between 32.5 and 34.6%, and the compressive strength had a maximum value of 11.4 MPa for the samples sintered at 1250 °C in the presence of a 20% wt porogenic agent. A cell viability above 70% and the rapid development of an apatitic phase layer make these materials good candidates for use in hard tissue engineering.

3.
Polymers (Basel) ; 14(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36365605

RESUMEN

The present work reports the synthesis and characterization of polycaprolactone fibers loaded with particulate calcium magnesium silicates, to form composite materials with bioresorbable and bioactive properties. The inorganic powders were achieved through a sol-gel method, starting from the compositions of diopside, akermanite, and merwinite, three mineral phases with suitable features for the field of hard tissue engineering. The fibrous composites were fabricated by electrospinning polymeric solutions with a content of 16% polycaprolactone and 5 or 10% inorganic powder. The physico-chemical evaluation from compositional and morphological points of view was followed by the biological assessment of powder bioactivity and scaffold biocompatibility. SEM investigation highlighted a significant reduction in fiber diameter, from around 3 µm to less than 100 nm after the loading stage, while EDX and FTIR spectra confirmed the existence of embedded mineral entities. The silicate phases were found be highly bioactive after 4 weeks of immersion in SBF, enriching the potential of the polymeric host that provides only biocompatibility and bioresorbability. Moreover, the cellular tests indicated a slight decrease in cell viability over the short-term, a compromise that can be accepted if the overall benefits of such multifunctional composites are considered.

4.
Materials (Basel) ; 15(19)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36234283

RESUMEN

Due to the urgent need to develop and improve biomaterials, the present article proposes a new strategy to obtain porous scaffolds based on forsterite (Mg2SiO4) for bone tissue regeneration. The main objective is to restore and improve bone function, providing a stable environment for regeneration. The usage of magnesium silicate relies on its mechanical properties being superior to hydroxyapatite and, in general, to calcium phosphates, as well as its high biocompatibility, and antibacterial properties. Mg2SiO4 powder was obtained using the sol-gel method, which was calcinated at 800 °C for 2 h; then, part of the powder was further used to make porous ceramics by mixing it with a porogenic agent (e.g., sucrose). The raw ceramic bodies were subjected to two sintering treatments, at 1250 or 1320 °C, and the characterization results were discussed comparatively. The porogenic agent did not influence the identified phases or the samples' crystallinity and was efficiently removed during the heat treatment. Moreover, the effect of the porogenic agent no longer seems significant after sintering at 1250 °C; the difference in porosity between the two ceramics was negligible. When analysing the in vitro cytotoxicity of the samples, the ones that were porous and treated at 1320 °C showed slightly better cell viability, with the cells appearing to adhere more easily to their surface.

5.
Gels ; 8(9)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36135286

RESUMEN

In this work, calcium magnesium silicate ceramics were processed through the sol-gel method in order to study the crystalline and morphological properties of the resulting materials in correlation with the compositional and thermal parameters. Tetraethyl orthosilicate and calcium/magnesium nitrates were employed as sources of cations, in ratios specific to diopside, akermanite and merwinite; they were further subjected to gelation, calcination (600 °C) and thermal treatments at different temperatures (800, 1000 and 1300 °C). The properties of the intermediate and final materials were investigated by thermal analysis, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and Rietveld refinement. Such ceramics represent suitable candidates for tissue engineering applications that require porosity and bioactivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA