Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-494640

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based algorithm that expands the SARS-CoV-2-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin, and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that HDAC2, BRD4 and USP10 host proteins have antiviral functions. Mycophenolic acid and merimepodib, two inhibitors of inosine monophosphate dehydrogenase (IMPDH 1 and IMPDH 2), showed modest antiviral effects with no toxicity in mock-infected control cells. The network-based approach enables systematic identification of host-targets that selectively modulate the SARS-CoV-2 interactome, as well as reveal novel chemical tools to probe virus-host interactions that regulate virus infection. Synopsis O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=80 SRC="FIGDIR/small/494640v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): org.highwire.dtl.DTLVardef@653d14org.highwire.dtl.DTLVardef@8d1234org.highwire.dtl.DTLVardef@1a632faorg.highwire.dtl.DTLVardef@5ce4f6_HPS_FORMAT_FIGEXP M_FIG C_FIG Viruses exploit host machinery and therefore it is important to understand the virus-host dependencies to gain better insight of the key regulators of viral infection. O_LIUsing a context-specific SARS-COV-2 PPI network, a computational framework was developed to identify host modulators of viral infection. C_LIO_LIChromatin modifying host proteins HDAC2 and BRD4, along with deubiquitinating enzyme USP10, act as antiviral proteins. C_LIO_LIIMPDH inhibitors mycophenolic acid and merimipodib showed modest antiviral response to SARS-COV-2 infection, and no toxic effects. C_LIO_LICell context specificity is a critical factor when identifying selective modulators of viral infection and potential antiviral therapeutics. C_LIO_LITopology-based network models cannot distinguish between host-proteins, the inhibition of which leads to either virus suppressive or enhancing effects. C_LI

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-448653

RESUMEN

SARS-CoV-2 and its vaccine/immune-escaping variants continue to pose a serious threat to public health due to a paucity of effective, rapidly deployable, and widely available treatments. Here, we address these challenges by combining Pegasys (IFNa) and nafamostat to effectively suppress SARS-CoV-2 infection in cell culture and hamsters. Our results indicate that Serpin E1 is an important mediator of the antiviral activity of IFNa and that both Serpin E1 and camostat can target the same cellular factor TMPRSS2, which plays a critical role in viral replication. The low doses of the drugs in combination may have several clinical advantages, including fewer adverse events and improved patient outcome. Thus, our study may provide a proactive solution for the ongoing pandemic and potential future coronavirus outbreaks, which is still urgently required in many parts of the world.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-425331

RESUMEN

There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. In the present study, we found that recombinant human interferon-alpha (IFNa) triggers intrinsic and extrinsic cellular antiviral responses, as well as reduces replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. Although IFNa alone was insufficient to completely abolish SARS-CoV-2 replication, combinations of IFNa with remdesivir or other antiviral agents (EIDD-2801, camostat, cycloheximide, or convalescent serum) showed strong synergy and effectively inhibited SARS-CoV-2 infection in human lung epithelial Calu-3 cells. Furthermore, we showed that the IFNa-remdesivir combination suppressed virus replication in human lung organoids, and that its single prophylactic dose attenuated SARS-CoV-2 infection in lungs of Syrian hamsters. Transcriptome and metabolomic analyses showed that the combination of IFNa-remdesivir suppressed virus-mediated changes in infected cells, although it affected the homeostasis of uninfected cells. We also demonstrated synergistic antiviral activity of IFNa2a-based combinations against other virus infections in vitro. Altogether, our results indicate that IFNa2a-based combination therapies can achieve higher efficacy while requiring lower dosage compared to monotherapies, making them attractive targets for further pre-clinical and clinical development.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-299933

RESUMEN

Combination therapies have become a standard for the treatment for HIV and HCV infections. They are advantageous over monotherapies due to better efficacy and reduced toxicity, as well as the ability to prevent the development of resistant viral strains and to treat viral co-infections. Here, we identify several new synergistic combinations against emerging and re-emerging viral infections in vitro. We observed synergistic activity of nelfinavir with investigational drug EIDD-2801 and convalescent serum against SARS-CoV-2 infection in human lung epithelial Calu-3 cells. We also demonstrated synergistic activity of vemurafenib combination with emetine, homoharringtonine, gemcitabine, or obatoclax against echovirus 1 infection in human lung epithelial A549 cells. We also found that combinations of sofosbuvir with brequinar and niclosamide were synergistic against HCV infection in hepatocyte derived Huh-7.5 cells, whereas combinations of monensin with lamivudine and tenofovir were synergistic against HIV-1 infection in human cervical TZM-bl cells. Finally, we present an online resource that summarizes novel and known antiviral drug combinations and their developmental status. Overall, the development of combinational therapies could have a global impact improving the preparedness and protection of the general population from emerging and re-emerging viral threats.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-091165

RESUMEN

As of June 2020, the number of people infected with severe acute respiratory coronavirus 2 (SARS-CoV-2) continues to skyrocket, with more than 6,5 million cases worldwide. Both the World Health Organization (WHO) and United Nations (UN) has highlighted the need for better control of SARS-CoV-2 infections. However, developing novel virus-specific vaccines, monoclonal antibodies and antiviral drugs against SARS-CoV-2 can be time-consuming and costly. Convalescent sera and safe-in-man broad-spectrum antivirals (BSAAs) are readily available treatment options. Here we developed a neutralization assay using SARS-CoV-2 strain and Vero-E6 cells. We identified most potent sera from recovered patients for treatment of SARS-CoV-2-infected patients. We also screened 136 safe-in-man broad-spectrum antivirals against SARS-CoV-2 infection in Vero-E6 cells and identified nelfinavir, salinomycin, amodiaquine, obatoclax, emetine and homoharringtonine. We found that combinations of virus-directed nelfinavir along with host-directed amodiaquine exhibited the highest synergy. Finally, we developed a website to disseminate the knowledge on available and emerging treatments of COVID-19.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-965582

RESUMEN

Therapeutic options for coronavirus remain limited. To address this unmet medical need, we screened 5,406 compounds, including United States Food and Drug Administration (FDA)- approved drugs and bioactives, for activity against a South Korean Middle East respiratory syndrome coronavirus (MERS-CoV) clinical isolate. Among 221 identified hits, 54 had therapeutic indexes (TI) greater than 6. Time-of-addition studies with selected drugs demonstrated eight and four FDA-approved drugs acted on the early and late stages of the viral life cycle, respectively. Confirmed hits included several cardiotonic agents (TI>100), atovaquone, an anti-malarial (TI>34), and ciclosonide, an inhalable corticosteroid (TI>6). Furthermore, utilizing the severe acute respiratory syndrome CoV-2 (SARS-CoV-2), combinations of remedesivir with selected dugs were evaluated, which identified ciclosonide and nelfinavir to be additive and synergistic drugs in vitro, respectively. Together, we screened FDA-approved drugs using patient-derived MERS-CoV, triaged hits to discriminate between early and late viral life cycle inhibitors, confirmed selected drugs using SARS-CoV-2, and demonstrated the added value of selected medications in combination with remedesivir. Our results identify potential therapeutic options for MERS-CoV infections, and provide a basis to treat coronavirus disease 2019 (COVID-19) and other coronavirus-related illnesses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...