Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Res ; 1829: 148792, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325559

RESUMEN

Temporal lobe epilepsy (TLE) development is associated with dysregulation of glutamatergic transmission in the hippocampus; however, detailed molecular mechanisms of pathological changes are still poorly understood. In the present study, we performed the complex analysis of glutamatergic system in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). Daily AGS stimulations (audiogenic kindling) were used to reproduce the dynamics of TLE development. Naïve KM rats were used as a control. After 14 AGS, at the stage of developing TLE, KM rats demonstrated significant upregulation of extracellular signal-regulated kinases (ERK) 1 and 2, cAMP response element-binding protein (CREB), and c-Fos in the hippocampus indicating activation of the hippocampal cells. These changes were accompanied with an increase in glutaminase and vesicular glutamate transporter (VGLUT) 2 suggesting the activation of glutamate production and loading into the synaptic vesicles. After 21 AGS, when TLE was fully-established, alterations were similar but more pronounced, with higher activation of glutaminase, increase in glutamate production, upregulation of VGLUT1 and 2, and Fos-related antigen 1 (Fra-1) along with c-Fos. Analysis of glutamate receptors showed variable changes. Thus, after 14 AGS, simultaneous increase in metabotropic glutamate receptor mGluR1 and decrease in ionotropic N-methyl-D-aspartate (NMDA) receptors could reflect compensatory anti-epileptic mechanism, while further kindling progression induced upregulation of ionotropic receptors, probably, contributing to the hippocampal epileptization. However, we revealed practically no alterations in the expression of synaptic proteins. Altogether, obtained results suggested that overactivation of glutamate production in the hippocampus strongly contributed to TLE development in KM rats.


Asunto(s)
Epilepsia Refleja , Epilepsia del Lóbulo Temporal , Excitación Neurológica , Ratas , Animales , Glutaminasa/metabolismo , Hipocampo/metabolismo , Epilepsia Refleja/metabolismo , Excitación Neurológica/fisiología , Epilepsia del Lóbulo Temporal/metabolismo , Predisposición Genética a la Enfermedad , Ácido Glutámico/metabolismo , Convulsiones/metabolismo , Estimulación Acústica
2.
Epilepsy Behav ; 125: 108445, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34837844

RESUMEN

Temporal lobe epilepsy is associated with considerable structural changes in the hippocampus. Pharmacological and electrical models of temporal lobe epilepsy in animals strongly suggest that hippocampal reorganization is based on seizure-stimulated aberrant neurogenesis but the data are often controversial and hard to interpret. The aim of the present study was to estimate neurogenesis and synaptic remodeling in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). In our experiments we exposed KM rats to audiogenic kindling of different durations (4, 14, and 21 AGS) to model different stages of epilepsy development. Naïve KM rats were used as a control. Our results showed that even 4 AGS stimulated proliferation in the subgranular layer of the dentate gyrus (DG) accompanied with increase in number of doublecortin (DCX)-positive immature granular cells. Elevated number of proliferating cells was also observed in the hilus indicating the enhancement of abnormal migration of neural progenitors. In contrast to the DG, all DCX-positive cells in the hilus expressed VGLUT1/2 and their number was increased indicating that seizure activity accelerates glutamatergic differentiation of ectopic hilar cells. 14-day kindling further stimulated proliferation, abnormal migration, and glutamatergic differentiation of new neurons both in the DG granular and subgranular layers and in the hilus. However, after 21 AGS increased proliferation was observed only in the DG, while the numbers of immature neurons expressed VGLUT1/2 were still enhanced in both hippocampal areas. Audiogenic kindling also stimulated sprouting of mossy fibers and enhanced expression of synaptopodin in the hippocampus indicating generation of new synaptic contacts between granular cells, mossy cells, and CA3 pyramid neurons. Thus, our data suggest that epilepsy progression is associated with exacerbation of aberrant neurogenesis and reorganization of hippocampal neural circuits that contribute to the enhancement and spreading of epileptiform activity.


Asunto(s)
Epilepsia Refleja , Excitación Neurológica , Animales , Hipocampo , Fibras Musgosas del Hipocampo , Neurogénesis , Ratas , Convulsiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA