Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Front Oncol ; 13: 1259314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053658

RESUMEN

Introduction: Malignant mesothelioma is a rare and aggressive form of cancer. Despite improvements in cancer treatment, there are still no curative treatment modalities for advanced stage of the malignancy. The aim of this study was to evaluate the anti-tumor efficacy of a novel combinatorial therapy combining AdV5/3-D24-ICOSL-CD40L, an oncolytic vector, with an anti-PD-1 monoclonal antibody. Methods: The efficacy of the vector was confirmed in vitro in three mesothelioma cell lines - H226, Mero-82, and MSTO-211H, and subsequently the antineoplastic properties in combination with anti-PD-1 was evaluated in xenograft H226 mesothelioma BALB/c and humanized NSG mouse models. Results and discussion: Anticancer efficacy was attributed to reduced tumour volume and increased infiltration of tumour infiltrating lymphocytes, including activated cytotoxic T-cells (GrB+CD8+). Additionally, a correlation between tumour volume and activated CD8+ tumour infiltrating lymphocytes was observed. These findings were confirmed by transcriptomic analysis carried out on resected human tumour tissue, which also revealed upregulation of CD83 and CRTAM, as well as several chemokines (CXCL3, CXCL9, CXCL11) in the tumour microenvironment. Furthermore, according to observations, the combinatorial therapy had the strongest effect on reducing mesothelin and MUC16 levels. Gene set enrichment analysis suggested that the combinatorial therapy induced changes to the expression of genes belonging to the "adaptive immune response" gene ontology category. Combinatorial therapy with oncolytic adenovirus with checkpoint inhibitors may improve anticancer efficacy and survival by targeted cancer cell destruction and triggering of immunogenic cell death. Obtained results support further assessment of the AdV5/3-D24-ICOSL-CD40L in combination with checkpoint inhibitors as a novel therapeutic perspective for mesothelioma treatment.

2.
Oncoimmunology ; 12(1): 2261278, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38126027

RESUMEN

Uveal melanoma (UM) is the most common ocular malignancy in adults. Nearly 95% of UM patients carry the mutually exclusive mutations in the homologous genes GNAQ (amino acid change Q209L/Q209P) and GNA11 (aminoacid change Q209L). UM is located in an immunosuppressed organ and does not suffer immunoediting. Therefore, we hypothesize that driver mutations in GNAQ/11 genes could be recognized by the immune system. Genomic and transcriptomic data from primary uveal tumors were collected from the TCGA-UM dataset (n = 80) and used to assess the immunogenic potential for GNAQ/GNA11 Q209L/Q209P mutations using a variety of tools and HLA type information. All prediction tools showed stronger GNAQ/11 Q209L binding to HLA than GNAQ/11 Q209P. The immunogenicity analysis revealed that Q209L is likely to be presented by more than 73% of individuals in 1000 G databases whereas Q209P is only predicted to be presented in 24% of individuals. GNAQ/11 Q209L showed a higher likelihood to be presented by HLA-I molecules than almost all driver mutations analyzed. Finally, samples carrying Q209L had a higher immune-reactive phenotype. Regarding cancer risk, seven HLA genotypes with low Q209L affinity show higher frequency in uveal melanoma patients than in the general population. However, no clear association was found between any HLA genotype and survival. Results suggest a high potential immunogenicity of the GNAQ/11 Q209L variant that could allow the generation of novel therapeutic tools to treat UM like neoantigen vaccinations.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP , Neoplasias de la Úvea , Adulto , Humanos , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Neoplasias de la Úvea/metabolismo , Mutación , Inmunoterapia
3.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446319

RESUMEN

The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.


Asunto(s)
Proteínas de Unión al ADN , Tumor Rabdoide , Humanos , Proteínas de Unión al ADN/genética , Inmunoterapia Adoptiva , Proteínas Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/terapia , Tumor Rabdoide/patología
4.
J Transl Med ; 21(1): 506, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501121

RESUMEN

BACKGROUND: The activation of dendritic cells (DCs) is pivotal for generating antigen-specific T-cell responses to eradicate tumor cells. Hence, immunotherapies targeting this interplay are especially intriguing. Moreover, it is of interest to modulate the tumor microenvironment (TME), as this harsh milieu often impairs adaptive immune responses. Oncolytic viral therapy presents an opportunity to overcome the immunosuppression in tumors by destroying tumor cells and thereby releasing antigens and immunostimulatory factors. These effects can be further amplified by the introduction of transgenes expressed by the virus. METHODS: Lokon oncolytic adenoviruses (LOAd) belong to a platform of chimeric serotype Ad5/35 viruses that have their replication restricted to tumor cells, but the expression of transgenes is permitted in all infected cells. LOAd732 is a novel oncolytic adenovirus that expresses three essential immunostimulatory transgenes: trimerized membrane-bound CD40L, 4-1BBL and IL-2. Transgene expression was determined with flow cytometry and ELISA and the oncolytic function was evaluated with viability assays and xenograft models. The activation profiles of DCs were investigated in co-cultures with tumor cells or in an autologous antigen-specific T cell model by flow cytometry and multiplex proteomic analysis. Statistical differences were analyzed with Kruskal-Wallis test followed by Dunn's multiple comparison test. RESULTS: All three transgenes were expressed in infected melanoma cells and DCs and transgene expression did not impair the oncolytic activity in tumor cells. DCs were matured post LOAd732 infection and expressed a multitude of co-stimulatory molecules and pro-inflammatory cytokines crucial for T-cell responses. Furthermore, these DCs were capable of expanding and stimulating antigen-specific T cells in addition to natural killer (NK) cells. Strikingly, the addition of immunosuppressive cytokines TGF-ß1 and IL-10 did not affect the ability of LOAd732-matured DCs to expand antigen-specific T cells and these cells retained an enhanced activation profile. CONCLUSIONS: LOAd732 is a novel immunostimulatory gene therapy based on an oncolytic adenovirus that expresses three transgenes, which are essential for mediating an anti-tumor immune response by activating DCs and stimulating T and NK cells even under imunosuppressive conditions commonly present in the TME. These qualities make LOAd732 an appealing new immunotherapy approach.


Asunto(s)
Melanoma , Linfocitos T , Humanos , Proteómica , Melanoma/genética , Melanoma/terapia , Células Asesinas Naturales , Citocinas/metabolismo , Terapia Genética , Células Dendríticas , Microambiente Tumoral
5.
J Immunother Cancer ; 10(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35338084

RESUMEN

BACKGROUND: VCN-01 is an oncolytic adenovirus (Ad5 based) designed to replicate in cancer cells with dysfunctional RB1 pathway, express hyaluronidase to enhance virus intratumoral spread and facilitate chemotherapy and immune cells extravasation into the tumor. This phase I clinical trial was aimed to find the maximum tolerated dose/recommended phase II dose (RP2D) and dose-limiting toxicity (DLT) of the intravenous delivery of the replication-competent VCN-01 adenovirus in patients with advanced cancer. METHODS: Part I: patients with advanced refractory solid tumors received one single dose of VCN-01. Parts II and III: patients with pancreatic adenocarcinoma received VCN-01 (only in cycle 1) and nab-paclitaxel plus gemcitabine (VCN-concurrent on day 1 in Part II, and 7 days before chemotherapy in Part III). Patients were required to have anti-Ad5 neutralizing antibody (NAbs) titers lower than 1/350 dilution. Pharmacokinetic and pharmacodynamic analyses were performed. RESULTS: 26% of the patients initially screened were excluded based on high NAbs levels. Sixteen and 12 patients were enrolled in Part I and II, respectively: RP2D were 1×1013 viral particles (vp)/patient (Part I), and 3.3×1012 vp/patient (Part II). Fourteen patients were included in Part III: there were no DLTs and the RP2D was 1×1013 vp/patient. Observed DLTs were grade 4 aspartate aminotransferase increase in one patient (Part I, 1×1013 vp), grade 4 febrile neutropenia in one patient and grade 5 thrombocytopenia plus enterocolitis in another patient (Part II, 1×1013 vp). In patients with pancreatic adenocarcinoma overall response rate were 50% (Part II) and 50% (Part III). VCN-01 viral genomes were detected in tumor tissue in five out of six biopsies (day 8). A second viral plasmatic peak and increased hyaluronidase serum levels suggested replication after intravenous injection in all patients. Increased levels of immune biomarkers (interferon-γ, soluble lymphocyte activation gene-3, interleukin (IL)-6, IL-10) were found after VCN-01 administration. CONCLUSIONS: Treatment with VCN-01 is feasible and has an acceptable safety. Encouraging biological and clinical activity was observed when administered in combination with nab-paclitaxel plus gemcitabine to patients with pancreatic adenocarcinoma. TRIAL REGISTRATION NUMBER: NCT02045602.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patología , Adenoviridae/genética , Albúminas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Desoxicitidina/análogos & derivados , Humanos , Hialuronoglucosaminidasa/uso terapéutico , Paclitaxel , Neoplasias Pancreáticas/tratamiento farmacológico , Gemcitabina , Neoplasias Pancreáticas
6.
Mol Ther Oncolytics ; 24: 429-442, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35141399

RESUMEN

Immune checkpoint inhibitors have revolutionized the treatment of metastatic melanoma, but most tumors show resistance. Resistance is connected to a non-T cell inflamed phenotype partially caused by a lack of functional dendritic cells (DCs) that are crucial for T cell priming. Herein, we investigated whether the adenoviral gene vehicle mLOAd703 carrying both DC- and T cell-activating genes can lead to inflammation in a B16-CD46 model and thereby overcome resistance to checkpoint inhibition therapy. B16-CD46 cells were injected subcutaneously in one or both flanks of immunocompetent C57BL/6J mice. mLOAd703 treatments were given intratumorally alone or in combination with intraperitoneal checkpoint inhibition therapy (anti-PD-1, anti-PD-L1, or anti-TIM-3). Tumor, lymph node, spleen, and serum samples were analyzed for the presence of immune cells and cytokines/chemokines. B16-CD46 tumors were non-inflamed and resistant to checkpoint blockade. In contrast, mLOAd703 treatment led to infiltration of the tumor by CD8+ T cells, natural killer (NK) cells, and CD103+ DCs, accompanied by a systemic increase of pro-inflammatory cytokines interferon γ (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-27 (IL-27). This response was even more pronounced after combining the virus with checkpoint therapy, in particular with anti-PD-L1 and anti-TIM-3, leading to further reduced tumor growth in injected lesions. Moreover, anti-PD-L1 combination also facilitated abscopal responses in non-injected lesions.

7.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36600663

RESUMEN

BACKGROUND: Oncolytic viruses constitute a growing field of interest, both in human and veterinary oncology, given that they are particularly helpful for treating non-surgical tumors and disseminated cancer, such as high-grade gliomas. Companion dogs present malignant gliomas with biological, genetic, phenotypic, immunological, and clinical similarities to human gliomas. These features favor comparative approaches, leading to the treatment of canine oncological patients to achieve translational applications to the human clinic. The systemic administration of oncolytic viruses presents a challenge due to their limitations in effectively targeting tumors and metastases. Therefore, the aim of this study is to evaluate the safety and antitumor activity of a virotherapy used in spontaneous canine tumors. METHODS: Ten dogs with high-grade rostrotentorial gliomas underwent weekly systemic endovenous cellular virotherapy with dCelyvir (canine mesenchymal stem cells infected with the canine oncolytic adenovirus ICOCAV17) for 8 weeks. Efficacy was determined in seven dogs according to the Response Assessment in Veterinary Neuro-Oncology criteria considering clinical status and MRI measurements. Medical history, physical and neurological examinations, and vaccination status were evaluated prior to and during follow-up. Safety was evaluated by physical examinations and hematological and biochemical changes in peripheral blood. Immune populations were analyzed by flow cytometry in peripheral blood and by gene expression and immunohistochemistry in the tumor microenvironment. RESULTS: The treatment was well tolerated and major adverse effects were not observed. Two dogs had partial responses (76% and 86% reduction in tumor size), and 3/7 showed stable disease. ICOCAV17 was detected in peripheral blood in nine dogs, and a correlation between the ICOCAV17 particles and anti-canine adenovirus (CAV) antibodies was observed. ICOCAV17 was detected in 3/9 tumor tissues after necropsies. Regarding tumor-infiltrating lymphocytes, the dogs with disease stabilization and partial response tended to have reduced memory B-cell infiltration and increased monocyte/macrophage lineage cells. CONCLUSIONS: These findings indicate that dCelyvir is safe and presents efficacy in canine rostrotentorial high-grade gliomas. These data are relevant to the ongoing phase Ib regulated human clinical trial that is administering this virotherapy to children, adolescents, and young adults with diffuse pontine glioma. Celyvir should be further explored as a treatment in veterinary and human neuro-oncology.


Asunto(s)
Glioma , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Perros , Glioma/terapia , Glioma/veterinaria , Oncología Médica , Virus Oncolíticos/genética , Microambiente Tumoral
8.
Mol Ther Oncolytics ; 22: 27-35, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34377767

RESUMEN

Oncolytic viruses (OVs) preferentially infect and selectively replicate in cancer cells. OVs have been tested in clinical trials as monotherapy or in combination with chemotherapy, radiotherapy, and immunotherapy. However, the dense extracellular matrix hampers the intratumoral spreading and efficacy of OVs. Previously we described VCN-01, an oncolytic adenovirus expressing a soluble version of human sperm hyaluronidase (hyal) PH20, which exhibited enhanced intratumoral distribution and antitumor activity in different models. Here, we present two oncolytic adenoviruses designed to increase the secretion of PH20 compared to VCN-01. ICO15K-40SAPH20, encoding PH20 under an Ad40 splice acceptor, and ICO15K-E1aPH20 expressing PH20 fused to the E1A gene by P2A peptide. We demonstrate that increased hyal activity improves antitumor efficacy in both a sensitive immunodeficient model and an immunocompetent model. Moreover, we show that hyal activity impacts T cell accumulation in tumors, highlighting the value of a hyaluronidase-expressing virus for combinations with other immunotherapies in cancers involving dense stroma.

9.
NAR Cancer ; 3(2): zcab015, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34316705

RESUMEN

Arming oncolytic adenoviruses with therapeutic transgenes is a well-established strategy for multimodal tumour attack. However, this strategy sometimes leads to unexpected attenuated viral replication and a loss of oncolytic effects, preventing these viruses from reaching the clinic. Previous work has shown that altering codon usage in viral genes can hamper viral fitness. Here, we have analysed how transgene codon usage impacts viral replication and oncolytic activity. We observe that, although transgenes with optimized codons show high expression levels at the first round of infection, they impair viral fitness and are therefore not expressed in a sustained manner. Conversely, transgenes encoded by suboptimal codons do not compromise viral replication and are thus stably expressed over time, allowing a greater oncolytic activity both in vitro and in vivo. Altogether, our work shows that fine-tuning codon usage leads to a concerted optimization of transgene expression and viral replication paving the way for the rational design of more efficacious oncolytic therapies.

10.
Sci Rep ; 11(1): 10780, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031450

RESUMEN

Lack of a dedicated integrated pipeline for neoantigen discovery in mice hinders cancer immunotherapy research. Novel sequential approaches through recurrent neural networks can improve the accuracy of T-cell epitope binding affinity predictions in mice, and a simplified variant selection process can reduce operational requirements. We have developed a web server tool (NAP-CNB) for a full and automatic pipeline based on recurrent neural networks, to predict putative neoantigens from tumoral RNA sequencing reads. The developed software can estimate H-2 peptide ligands, with an AUC comparable or superior to state-of-the-art methods, directly from tumor samples. As a proof-of-concept, we used the B16 melanoma model to test the system's predictive capabilities, and we report its putative neoantigens. NAP-CNB web server is freely available at http://biocomp.cnb.csic.es/NeoantigensApp/ with scripts and datasets accessible through the download section.


Asunto(s)
Biología Computacional/métodos , Epítopos de Linfocito T/genética , Antígenos de Histocompatibilidad Clase I/química , Melanoma Experimental/genética , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidad Clase I/genética , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Programas Informáticos
11.
J Control Release ; 332: 517-528, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33675877

RESUMEN

Tumor targeting and intratumoral virus spreading are key features for successful oncolytic virotherapy. VCN-11 is a novel oncolytic adenovirus, genetically modified to express hyaluronidase (PH20) and display an albumin-binding domain (ABD) on the hexon. ABD allows the virus to self-coat with albumin when entering the bloodstream and evade neutralizing antibodies (NAbs). Here, we validate VCN-11 mechanism of action and characterize its toxicity. VCN-11 replication, hyaluronidase activity and binding to human albumin to evade NAbs was evaluated. Toxicity and efficacy of VCN-11 were assessed in mice and hamsters. Tumor targeting, and antitumor activity was analyzed in the presence of NAbs in several tumor models. VCN-11 induced 450 times more cytotoxicity in tumor cells than in normal cells. VCN-11 hyaluronidase production was confirmed by measuring PH20 activity in vitro and in virus-infected tumor areas in vivo. VCN-11 evaded NAbs from different sources and tumor targeting was demonstrated in the presence of high levels of NAbs in vivo, whereas the control virus without ABD was neutralized. VCN-11 showed a low toxicity profile in athymic nude mice and Syrian hamsters, allowing treatments with high doses and fractionated administrations without major toxicities (up to 1.2x1011vp/mouse and 7.5x1011vp/hamster). Fractionated intravenous administrations improved circulation kinetics and tumor targeting. VCN-11 antitumor efficacy was demonstrated in the presence of NAbs against Ad5 and itself. Oncolytic adenovirus VCN-11 disrupts tumor matrix and displays antitumor effects even in the presence of NAbs. These features make VCN-11 a safe promising candidate to test re-administration in clinical trials.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Adenoviridae , Animales , Anticuerpos Neutralizantes , Línea Celular Tumoral , Cricetinae , Hialuronoglucosaminidasa , Ratones , Ratones Desnudos , Virus Oncolíticos/genética , Replicación Viral , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Front Microbiol ; 12: 633946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643266

RESUMEN

Vaccination is the most effective method to date to prevent viral diseases. It intends to mimic a naturally occurring infection while avoiding the disease, exposing our bodies to viral antigens to trigger an immune response that will protect us from future infections. Among different strategies for vaccine development, recombinant vaccines are one of the most efficient ones. Recombinant vaccines use safe viral vectors as vehicles and incorporate a transgenic antigen of the pathogen against which we intend to generate an immune response. These vaccines can be based on replication-deficient viruses or replication-competent viruses. While the most effective strategy involves replication-competent viruses, they must be attenuated to prevent any health hazard while guaranteeing a strong humoral and cellular immune response. Several attenuation strategies for adenoviral-based vaccine development have been contemplated over time. In this paper, we will review them and discuss novel approaches based on the principle that protein synthesis from individual genes can be modulated by codon usage bias manipulation. We will summarize vaccine approaches that consider recoding of viral proteins to produce adenoviral attenuation and recoding of the transgene antigens for both viral attenuation and efficient viral epitope expression.

13.
Clin Cancer Res ; 27(11): 2979-2988, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526422

RESUMEN

Cancer immunotherapy targeting immune checkpoint inhibitors shows efficacy in several human cancers, but "cold tumors" that lack immune cells are typically unresponsive. Among the potential therapeutic approaches that could "heat" or promote lymphocyte infiltration of cold tumors, oncolytic viruses have attracted interest for their lytic and immunogenic mechanisms of action. In this article, we review the use of oncolytic adenoviruses in cancer immunotherapy, with a particular focus on preclinical and clinical data of oncolytic adenovirus-triggered immune responses against tumor antigens. We also discuss parameters to consider in clinical trial design and the combination of oncolytic adenoviruses with conventional treatments or other immunotherapies.


Asunto(s)
Adenoviridae/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Antígenos de Neoplasias/inmunología , Humanos , Tolerancia Inmunológica/inmunología , Inmunoterapia/tendencias , Viroterapia Oncolítica/tendencias , Linfocitos T/inmunología
14.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149591

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by dense desmoplastic stroma that limits the delivery of anticancer agents. VCN-01 is an oncolytic adenovirus designed to replicate in cancer cells with a dysfunctional RB1 pathway and express hyaluronidase. Here, we evaluated the mechanism of action of VCN-01 in preclinical models and in patients with pancreatic cancer. METHODS: VCN-01 replication and antitumor efficacy were evaluated alone and in combination with standard chemotherapy in immunodeficient and immunocompetent preclinical models using intravenous or intratumoral administration. Hyaluronidase activity was evaluated by histochemical staining and by measuring drug delivery into tumors. In a proof-of-concept clinical trial, VCN-01 was administered intratumorally to patients with PDAC at doses up to 1×1011 viral particles in combination with chemotherapy. Hyaluronidase expression was measured in serum by an ELISA and its activity within tumors by endoscopic ultrasound elastography. RESULTS: VCN-01 replicated in PDAC models and exerted antitumor effects which were improved when combined with chemotherapy. Hyaluronidase expression by VCN-01 degraded tumor stroma and facilitated delivery of a variety of therapeutic agents such as chemotherapy and therapeutic antibodies. Clinically, treatment was generally well-tolerated and resulted in disease stabilization of injected lesions. VCN-01 was detected in blood as secondary peaks and in post-treatment tumor biopsies, indicating virus replication. Patients had increasing levels of hyaluronidase in sera over time and decreased tumor stiffness, suggesting stromal disruption. CONCLUSIONS: VCN-01 is an oncolytic adenovirus with direct antitumor effects and stromal disruption capabilities, representing a new therapeutic agent for cancers with dense stroma. TRIAL REGISTRATION NUMBER: EudraCT number: 2012-005556-42 and NCT02045589.


Asunto(s)
Adenoviridae/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Ductal Pancreático/terapia , Viroterapia Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Células del Estroma/efectos de los fármacos , Albúminas/administración & dosificación , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Terapia Combinada , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Femenino , Humanos , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Paclitaxel/administración & dosificación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , Gemcitabina
15.
Clin Cancer Res ; 27(3): 889-902, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257429

RESUMEN

PURPOSE: Extracellular matrix (ECM) component hyaluronan (HA) facilitates malignant phenotypes of glioblastoma (GBM), however, whether HA impacts response to GBM immunotherapies is not known. Herein, we investigated whether degradation of HA enhances oncolytic virus immunotherapy for GBM. EXPERIMENTAL DESIGN: Presence of HA was examined in patient and murine GBM. Hyaluronidase-expressing oncolytic adenovirus, ICOVIR17, and its parental virus, ICOVIR15, without transgene, were tested to determine if they increased animal survival and modulated the immune tumor microenvironment (TME) in orthotopic GBM. HA regulation of NF-κB signaling was examined in virus-infected murine macrophages. We combined ICOVIR17 with PD-1 checkpoint blockade and assessed efficacy and determined mechanistic contributions of tumor-infiltrating myeloid and T cells. RESULTS: Treatment of murine orthotopic GBM with ICOVIR17 increased tumor-infiltrating CD8+ T cells and macrophages, and upregulated PD-L1 on GBM cells and macrophages, leading to prolonged animal survival, compared with control virus ICOVIR15. High molecular weight HA inhibits adenovirus-induced NF-κB signaling in macrophages in vitro, linking HA degradation to macrophage activation. Combining ICOVIR17 with anti-PD-1 antibody further extended the survival of GBM-bearing mice, achieving long-term remission in some animals. Mechanistically, CD4+ T cells, CD8+ T cells, and macrophages all contributed to the combination therapy that induced tumor-associated proinflammatory macrophages and tumor-specific T-cell cytotoxicity locally and systemically. CONCLUSIONS: Our studies are the first to show that immune modulatory ICOVIR17 has a dual role of mediating degradation of HA within GBM ECM and subsequently modifying the immune landscape of the TME, and offers a mechanistic combination immunotherapy with PD-L1/PD-1 blockade that remodels innate and adaptive immune cells.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Hialuronoglucosaminidasa/genética , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Viroterapia Oncolítica/métodos , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/inmunología , Matriz Extracelular/metabolismo , Femenino , Glioblastoma/genética , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Inmunoterapia/métodos , Ratones , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708234

RESUMEN

Oncolytic adenoviruses (OAds) present limited efficacy in clinics. The insertion of therapeutic transgenes into OAds genomes, known as "arming OAds", has been the main strategy to improve their therapeutic potential. Different approaches were published in the decade of the 2000s, but with few comparisons. Most armed OAds have complete or partial E3 deletions, leading to a shorter half-life in vivo. We generated E3+ OAds using two insertion sites, After-fiber and After-E4, and two different splice acceptors linked to the major late promoter, either the Ad5 protein IIIa acceptor (IIIaSA) or the Ad40 long fiber acceptor (40SA). The highest transgene levels were obtained with the After-fiber location and 40SA. However, the set of codons of the transgene affected viral fitness, highlighting the relevance of transgene codon usage when arming OAds using the major late promoter.


Asunto(s)
Adenoviridae/genética , Terapia Genética/métodos , Virus Oncolíticos/genética , Replicación Viral/genética , Adenoviridae/metabolismo , Animales , Línea Celular Tumoral , Uso de Codones , Genes Reporteros , Vectores Genéticos , Humanos , Ratones , Virus Oncolíticos/metabolismo , Análisis de Componente Principal , Regiones Promotoras Genéticas , Transgenes , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nanomaterials (Basel) ; 10(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560474

RESUMEN

Oncolytic adenoviruses are a therapeutic alternative to treat cancer based on their ability to replicate selectively in tumor cells. However, their use is limited mainly by the neutralizing antibody (Nab) immune response that prevents repeated dosing. An alternative to facilitate the DNA access to the tumor even in the presence of anti-viral Nabs could be gold nanoparticles able to transfer DNA molecules. However, the ability of these nanoparticles to carry large DNA molecules, such as an oncolytic adenovirus genome, has not been studied. In this work, gold nanoparticles were functionalized with different amounts of polyethylenimine to transfer in a safe and efficient manner a large oncolytic virus genome. Their transfer efficacy and final effect of the oncolytic virus in cancer cells are studied. For each synthesized nanoparticle, (a) DNA loading capacity, (b) complex size, (c) DNA protection ability, (d) transfection efficacy and (e) cytotoxic effect were studied. We observed that small gold nanoparticles (70-80 nm in diameter) protected DNA against nucleases and were able to transfect the ICOVIR-15 oncolytic virus genome encoded in pLR1 plasmid. In the present work, efficient transgene RNA expression, luciferase activity and viral cytopathic effect on cancer cells are reported. These results suggest gold nanoparticles to be an efficient and safe vector for oncolytic adenovirus genome transfer.

18.
Cancers (Basel) ; 12(4)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340119

RESUMEN

Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness.

19.
Mol Ther ; 28(4): 1033-1042, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32053771

RESUMEN

We present here the results of a first-in-human, first-in-child trial for patients with relapsed/refractory solid tumors using Celyvir, an advanced therapy medicine that combines autologous mesenchymal stem cells (MSCs) carrying an oncolytic adenovirus. Celyvir was manufactured from a bone marrow aspirate and then given intravenously. Patients received weekly infusions for 6 weeks at a dose of 2 × 106 cells/kg (children) or 0.5-1 × 106 cells/kg (adults), 2 × 104 viral particles per cell. Fifteen pediatric and 19 adult patients were recruited, but 18 were screen failures, mainly because rapid disease progression before Celyvir was available. No grade 2-5 toxicities were reported. Adenoviral replication detected by PCR was found in all but 2 pediatric patient and in none of the adult ones. Absolute numbers of circulating leukocytes suffered minor changes along therapy, but some subsets showed differences comparing the pediatric versus the adult cohorts. Two patients with neuroblastoma showed disease stabilization, and one of them continued on treatment for up to 6 additional weeks. Celyvir, the combination of MSCs and oncolytic adenovirus, is safe and warrants further evaluation in a phase 2 setting. The use of MSCs may be a strategy to increase the amount of oncolytic virus administered to patients, minimizing toxicities and avoiding direct tumor injections.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/virología , Neoplasias/terapia , Virus Oncolíticos/genética , Adolescente , Adulto , Factores de Edad , Anciano , Niño , Preescolar , Dependovirus/genética , Dependovirus/fisiología , Estudios de Factibilidad , Humanos , Persona de Mediana Edad , Neoplasias/inmunología , Virus Oncolíticos/fisiología , Trasplante Autólogo , Resultado del Tratamiento
20.
Cancer Gene Ther ; 27(5): 383-388, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31204390

RESUMEN

Poor tumor targeting of oncolytic adenoviruses (OAdv) after systemic administration is considered a major limitation for virotherapy of disseminated cancers. The benefit of using mesenchymal stem cells as cell carriers for OAdv tumor targeting is currently evaluated not only in preclinical models but also in clinical trials. In this context, we have previously demonstrated the enhanced antitumor efficacy of OAdv-loaded menstrual blood-derived mesenchymal stem cells (MenSCs). However, although significant, the antitumor efficacy obtained was modest, and we hypothesized that a greater antitumor efficacy could be obtained arming the OAdv with a therapeutic transgene. Here we show that combining MenSCs with ICOVIR15-cBiTE, an OAdv expressing an epidermal growth factor receptor (EGFR)-targeting bispecific T-cell engager (cBiTE), enhances the antitumor efficacy compared to MenSCs loaded with the unarmed virus ICOVIR15. We found that MenSCs properly produce cBiTE after viral infection leading to a greater antitumor potency both in vitro and in vivo. These findings indicate the mutual benefit of combining MenSCs and armed OAdv and support the combination of ICOVIR15-cBiTE and MenSCs as a cancer treatment.


Asunto(s)
Terapia Combinada/métodos , Sistemas de Liberación de Medicamentos/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Células Sanguíneas/inmunología , Línea Celular Tumoral , Receptores ErbB/genética , Humanos , Menstruación/sangre , Células Madre Mesenquimatosas/inmunología , Ratones , Neoplasias/inmunología , Neoplasias/patología , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Transgenes/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...