Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 8(1): 58, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080988

RESUMEN

Zika virus (ZIKV), an arbovirus transmitted by mosquitoes, was identified as a cause of congenital disease during a major outbreak in the Americas in 2016. Vaccine design strategies relied on limited available isolate sequence information due to the rapid response necessary. The first-generation ZIKV mRNA vaccine, mRNA-1325, was initially generated and, as additional strain sequences became available, a second mRNA vaccine, mRNA-1893, was developed. Herein, we compared the immune responses following mRNA-1325 and mRNA-1893 vaccination and reported that mRNA-1893 generated comparable neutralizing antibody titers to mRNA-1325 at 1/20th of the dose and provided complete protection from ZIKV challenge in non-human primates. In-depth characterization of these vaccines indicated that the observed immunologic differences could be attributed to a single amino acid residue difference that compromised mRNA-1325 virus-like particle formation.

2.
Cell Rep ; 42(2): 112126, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36795561

RESUMEN

To disseminate through the body, Zika virus (ZIKV) is thought to exploit the mobility of myeloid cells, in particular monocytes and dendritic cells. However, the timing and mechanisms underlying shuttling of the virus by immune cells remains unclear. To understand the early steps in ZIKV transit from the skin, at different time points, we spatially mapped ZIKV infection in lymph nodes (LNs), an intermediary site en route to the blood. Contrary to prevailing hypotheses, migratory immune cells are not required for the virus to reach the LNs or blood. Instead, ZIKV rapidly infects a subset of sessile CD169+ macrophages in the LNs, which release the virus to infect downstream LNs. Infection of CD169+ macrophages alone is sufficient to initiate viremia. Overall, our experiments indicate that macrophages that reside in the LNs contribute to initial ZIKV spread. These studies enhance our understanding of ZIKV dissemination and identify another anatomical site for potential antiviral intervention.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Macrófagos , Monocitos/patología , Ganglios Linfáticos/patología
3.
Proc Natl Acad Sci U S A ; 120(3): e2218899120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36638211

RESUMEN

Cleavage of the flavivirus premembrane (prM) structural protein during maturation can be inefficient. The contribution of partially mature flavivirus virions that retain uncleaved prM to pathogenesis during primary infection is unknown. To investigate this question, we characterized the functional properties of newly-generated dengue virus (DENV) prM-reactive monoclonal antibodies (mAbs) in vitro and using a mouse model of DENV disease. Anti-prM mAbs neutralized DENV infection in a virion maturation state-dependent manner. Alanine scanning mutagenesis and cryoelectron microscopy of anti-prM mAbs in complex with immature DENV defined two modes of attachment to a single antigenic site. In vivo, passive transfer of intact anti-prM mAbs resulted in an antibody-dependent enhancement of disease. However, protection against DENV-induced lethality was observed when the transferred mAbs were genetically modified to inhibit their ability to interact with Fcγ receptors. These data establish that in addition to mature forms of the virus, partially mature infectious prM+ virions can also contribute to pathogenesis during primary DENV infections.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Virus del Dengue , Dengue , Microscopía por Crioelectrón , Proteínas del Envoltorio Viral/metabolismo , Virión/metabolismo , Animales , Ratones
4.
NPJ Vaccines ; 7(1): 139, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333336

RESUMEN

Whole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.

5.
Mol Ther ; 30(5): 1810-1821, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35395399

RESUMEN

Monoclonal antibodies are highly specific proteins that are cloned from a single B cell and bind to a single epitope on a pathogen. These laboratory-made molecules can serve as prophylactics or therapeutics for infectious diseases and have an impressive capacity to modulate the progression of disease, as demonstrated for the first time on a large scale during the COVID-19 pandemic. The high specificity and natural starting point of monoclonal antibodies afford an encouraging safety profile, yet the high cost of production remains a major limitation to their widespread use. While a monoclonal antibody approach to abrogating malaria infection is not yet available, the unique life cycle of the malaria parasite affords many opportunities for such proteins to act, and preliminary research into the efficacy of monoclonal antibodies in preventing malaria infection, disease, and transmission is encouraging. This review examines the current status and future outlook for monoclonal antibodies against malaria in the context of the complex life cycle and varied antigenic targets expressed in the human and mosquito hosts, and provides insight into the strengths and limitations of this approach to curtailing one of humanity's oldest and deadliest diseases.


Asunto(s)
Antineoplásicos Inmunológicos , COVID-19 , Malaria , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antiprotozoarios , COVID-19/prevención & control , Epítopos , Humanos , Malaria/prevención & control , Pandemias
6.
J Infect Dis ; 224(9): 1550-1555, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33961055

RESUMEN

Zika virus (ZIKV) deoxyribonucleic acid vaccine VRC5283 encoding viral structural genes has been shown to be immunogenic in humans. Recognizing that antigenically related flaviviruses cocirculate in regions with ZIKV activity, we explored the degree of antibody cross-reactivity elicited by this vaccine candidate using genetically diverse flaviviruses. The antibody response of vaccinated individuals with no evidence of prior flavivirus infection or vaccine experience had a limited capacity to bind heterologous viruses. In contrast, vaccine-elicited antibodies from individuals with prior flavivirus experience had a greater capacity to bind, but not neutralize, distantly related flaviviruses. These findings suggest that prior flavivirus exposure shapes the humoral immune response to vaccination.


Asunto(s)
Anticuerpos Neutralizantes , Flavivirus , Vacunas de ADN , Infección por el Virus Zika , Virus Zika , Anticuerpos Antivirales , Formación de Anticuerpos , Reacciones Cruzadas , Flavivirus/genética , Flavivirus/inmunología , Humanos , Pruebas de Neutralización , Plásmidos , Vacunas , Virus Zika/genética , Virus Zika/inmunología , Infección por el Virus Zika/prevención & control
7.
Sci Adv ; 6(32): eaba5068, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32821824

RESUMEN

Zika virus (ZIKV) is the cause of a pandemic associated with microcephaly in newborns and Guillain-Barre syndrome in adults. Currently, there are no available treatments or vaccines for ZIKV, and the development of a safe and effective vaccine is a high priority for many global health organizations. We describe the development of ZIKV vaccine candidates using the self-amplifying messenger RNA (SAM) platform technology delivered by cationic nanoemulsion (CNE) that allows bedside mixing and is particularly useful for rapid responses to pandemic outbreaks. Two immunizations of either of the two lead SAM (CNE) vaccine candidates elicited potent neutralizing antibody responses to ZIKV in mice and nonhuman primates. Both SAM (CNE) vaccines protected these animals from ZIKV challenge, with one candidate providing complete protection against ZIKV infection in nonhuman primates. The data provide a preclinical proof of concept that a SAM (CNE) vaccine candidate can rapidly elicit protective immunity against ZIKV.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Antivirales , Ratones , ARN Mensajero/genética , Virus Zika/genética , Infección por el Virus Zika/prevención & control
8.
Sci Transl Med ; 12(547)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32522807

RESUMEN

The emergence of Zika virus (ZIKV) in the Americas stimulated the development of multiple ZIKV vaccine candidates. We previously developed two related DNA vaccine candidates encoding ZIKV structural proteins that were immunogenic in animal models and humans. We sought to identify neutralizing antibody (NAb) properties induced by each vaccine that correlated with protection in nonhuman primates (NHPs). Despite eliciting equivalent NAb titers in NHPs, these vaccines were not equally protective. The transfer of equivalent titers of vaccine-elicited NAb into AG129 mice also revealed nonequivalent protection, indicating qualitative differences among antibodies (Abs) elicited by these vaccines. Both vaccines elicited Abs with similar binding titers against envelope protein monomers and those incorporated into virus-like particles, as well as a comparable capacity to orchestrate phagocytosis. Functional analysis of vaccine-elicited NAbs from NHPs and humans revealed a capacity to neutralize the structurally mature form of the ZIKV virion that varied in magnitude among vaccine candidates. Conversely, sensitivity to the virion maturation state was not a characteristic of NAbs induced by natural or experimental infection. Passive transfer experiments in mice revealed that neutralization of mature ZIKV virions more accurately predicts protection from ZIKV infection. These findings demonstrate that NAb correlates of protection may differ among vaccine antigens when assayed using standard neutralization platforms and suggest that measurements of Ab quality, including the capacity to neutralize mature virions, will be critical for defining correlates of ZIKV vaccine-induced immunity.


Asunto(s)
Vacunas Virales , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ratones , Infección por el Virus Zika/prevención & control
9.
PLoS Pathog ; 16(5): e1008181, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453765

RESUMEN

Plasmodium sporozoites are the infective stage of the malaria parasite. Though this is a bottleneck for the parasite, the quantitative dynamics of transmission, from mosquito inoculation of sporozoites to patent blood-stage infection in the mammalian host, are poorly understood. Here we utilize a rodent model to determine the probability of malaria infection after infectious mosquito bite, and consider the impact of mosquito parasite load, blood-meal acquisition, probe-time, and probe location, on infection probability. We found that infection likelihood correlates with mosquito sporozoite load and, to a lesser degree, the duration of probing, and is not dependent upon the mosquito's ability to find blood. The relationship between sporozoite load and infection probability is non-linear and can be described by a set of models that include a threshold, with mosquitoes harboring over 10,000 salivary gland sporozoites being significantly more likely to initiate a malaria infection. Overall, our data suggest that the small subset of highly infected mosquitoes may contribute disproportionally to malaria transmission in the field and that quantifying mosquito sporozoite loads could aid in predicting the force of infection in different transmission settings.


Asunto(s)
Malaria/transmisión , Esporozoítos/metabolismo , Animales , Anopheles/metabolismo , Anopheles/parasitología , Conducta Alimentaria , Femenino , Malaria/parasitología , Ratones , Mosquitos Vectores/metabolismo , Plasmodium/metabolismo , Plasmodium/patogenicidad , Plasmodium yoelii/metabolismo , Plasmodium yoelii/patogenicidad , Glándulas Salivales/parasitología , Esporozoítos/fisiología
10.
PLoS One ; 13(7): e0201043, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30044851

RESUMEN

Macrophages express a wide array of invariant receptors that facilitate host defense and mediate pathogenesis during pathogen invasion. We report on a novel population of CD11bhighCD14+F4/80+ macrophages that express TCRß. This population expands dramatically during a Plasmodium berghei ANKA infection and sequesters in the brain during experimental cerebral malaria. Importantly, measurement of TCRß transcript and protein levels in macrophages in wildtype versus nude and Rag1 knockout mice establishes that the observed expression is not a consequence of passive receptor expression due to phagocytosis or trogocytosis of peripheral T cells or nonspecific antibody staining to an Fc receptor or cross reactive epitope. We also demonstrate that TCRß on brain sequestered macrophages undergoes productive gene rearrangements and shows preferential Vß usage. Remarkably, there is a significant correlation in the proportion of macrophages that express TCRß and peripheral parasitemia. In addition, presence of TCRß on the macrophage also correlates with a significant increase (1.9 fold) in the phagocytosis of parasitized erythrocytes. By transcriptional profiling, we identify a novel set of genes and pathways that associate with TCRß expression by the macrophage. Expansion of TCRß-expressing macrophages points towards a convergence of the innate and adaptive immune responses where both arms of the immune system cooperate to modulate the host response to malaria and possibly other infections.


Asunto(s)
Regulación de la Expresión Génica , Macrófagos/metabolismo , Macrófagos/parasitología , Malaria Cerebral/genética , Malaria Cerebral/inmunología , Fagocitosis , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Animales , Encéfalo/inmunología , Encéfalo/parasitología , Eritrocitos/parasitología , Femenino , Reordenamiento Génico , Leucocitos/metabolismo , Macrófagos/inmunología , Malaria Cerebral/parasitología , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
11.
Infect Immun ; 86(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29685989

RESUMEN

Recent studies have demonstrated that a subpopulation of neutrophils express the TCRαß combinatorial immunoreceptor in humans and mice. Here, we report that a Plasmodium berghei ANKA murine malaria infection induces expansion of TCRß expressing CD11b+ Ly6G+ neutrophils in the spleen during the early phase of infection. Measurement of TCRß transcript and protein levels of neutrophils in wild-type versus nude and Rag1 knockout mice establishes that the observed expression is not a consequence of nonspecific antibody staining or passive receptor expression due to phagocytosis or trogocytosis of peripheral T cells. Remarkably, on day 3 postinfection, we observed a highly significant correlation between the proportion of neutrophils that express TCRß and peripheral blood parasite burden. In addition, TCRß+ neutrophils phagocytose parasitized erythrocytes with 4-fold greater efficiency than TCRß- neutrophils. Together these results signify that TCR expression by the neutrophil plays an important role in the regulation of parasite burden by enhancing the phagocytic capacity of the neutrophil.


Asunto(s)
Malaria/inmunología , Neutrófilos/inmunología , Parasitemia/inmunología , Fagocitosis , Plasmodium berghei , Receptores de Antígenos de Linfocitos T alfa-beta/análisis , Animales , Encéfalo/inmunología , Femenino , Reordenamiento Génico de la Cadena beta de los Receptores de Antígenos de los Linfocitos T , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Bazo/inmunología
12.
Biochem Biophys Res Commun ; 474(4): 680-685, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27150627

RESUMEN

The procoagulant activity (PA) of stored units of red blood cells (RBC) increases over time, which is related to the expression/exposure of tissue factor (TF). However, there is a discrepancy between the TF measured and changes in PA observed, suggesting that other blood components contribute to this activity. Our goal was to evaluate changes in PA of stored RBCs and to determine possible contributors to it. RBC units from 4 healthy donors were prepared and stored at 4 °C. On selected days, RBC aliquots were reconstituted with autologous plasma and tested in the thromboelastography assay. Corresponding supernatants were tested in a clotting assay. For all donors, the clotting time (CT) of reconstituted RBC units decreased from ∼3000-4000s on day 1 to ∼1000-1600s on day 30, with the most dramatic changes occurring between days 1 and 5. Anti-TF antibody slightly prolonged the CT. The concentration of TF did not change significantly over time and was within the range of 0.3-2.3 pM. Bovine lactadherin (LTD) prolonged the CT of the RBC (by 2.4-3.4-fold in days 3-5 and by 1.3-1.8-fold at day 30). Anti-TF antibody together with LTD had a cumulative effect on the CT prolongation. CT of supernatants responded to both anti-TF and anti-FXIa antibodies. Three contributors to the PA of stored RBC were identified, i.e. FXIa in solution and phosphatidylserine and TF exposed on blood cells and microparticles. Failure of LTD and antibodies to completely eliminate PA suggests that other components of blood could contribute to it.


Asunto(s)
Coagulación Sanguínea/fisiología , Conservación de la Sangre/métodos , Eritrocitos/fisiología , Factor XIa/metabolismo , Manejo de Especímenes/métodos , Tromboplastina/metabolismo , Células Cultivadas , Humanos
13.
J Trauma Acute Care Surg ; 76(1): 107-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24368364

RESUMEN

BACKGROUND: Viscoelastic measurements are frequently being used in clinical and research settings for a rapid assessment of the hemostatic processes of blood clot formation and degradation. These measurements are being performed on either of two instruments (TEG and ROTEM) using their proprietary reagents. Standardization between the instruments and the reagents has been lacking but is necessary to compare results across instruments. In this study, we perform a crossover analysis between the TEG and ROTEM instruments using proprietary reagents from each manufacturer. METHODS: We tested three sets of reagents as follows: (1) in-tem and ex-tem (Tem International GmbH); (2) kaolin and RapidTEG (Haemonetics); (3) a well-characterized control recombinant tissue factor-phospholipid reagent. Blood was drawn from six healthy donors, and each reagent was run concurrently in the TEG and ROTEM instruments. The volume of commercial reagent and calcium used was adjusted for crossover measurements to maintain the same concentration of each reagent in the blood. The outputs of clot time, rate of clot formation, and maximum firmness of the clot of the ROTEM and the TEG tracings were evaluated. RESULTS: The in-tem and RapidTEG reagents showed no disparity between instruments for any parameter. Significant differences between the instruments were found in the α angle and maximum firmness of the clot for ex-tem and kaolin reagents as well as in the clot time and maximum firmness of the clot for the recombinant tissue factor-phospholipid reagent. CONCLUSION: Although significant differences were observed for some parameters, the magnitudes were small compared with the differences between tests or the normal range variation in parameter values observed for these tests. These findings indicate that the instruments are more interchangeable than previously reported.


Asunto(s)
Indicadores y Reactivos/uso terapéutico , Tromboelastografía/métodos , Adulto , Femenino , Humanos , Indicadores y Reactivos/normas , Caolín , Masculino , Proteínas Recombinantes , Tromboelastografía/instrumentación , Tromboelastografía/normas , Tromboplastina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...