Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35681604

RESUMEN

BACKGROUND: Well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS) accounts for ~60% of retroperitoneal sarcomas. WDLPS and DDLPS divergently evolve from a common precursor and are both marked by the amplification of the 12q13-q15 region, leading to the abnormal expression of MDM2, CDK4, and HMGA2 genes. DDLPS is a non-lipogenic disease associated with aggressive clinical behavior. Patients have limited therapeutic options, especially for advanced disease, and their outcome remains largely unsatisfactory. This evidence underlines the need for identifying and validating DDLPS-specific actionable targets to design novel biology-driven therapies. METHODS: Following gene expression profiling of DDLPS clinical specimens, we observed the up-regulation of "telomere maintenance" (TMM) pathways in paired DD and WD components of DDLPS. Considering the relevance of TMM for LPS onset and progression, the activity of a telomeric G-quadruplex binder (RHPS4) was assessed in DDLPS patient-derived cell lines. RESULTS: Equitoxic concentrations of RHPS4 in DDLPS cells altered telomeric c-circle levels, induced DNA damage, and resulted in the accumulation of γ-H2AX-stained micronuclei. This evidence was paralleled by an RHPS4-mediated reduction of in vitro cell migration and induction of apoptosis/autophagy. CONCLUSIONS: Our findings support telomere as an intriguing therapeutic target in DDLPS and suggest G-quadruplex binders as innovative therapeutic agents.

2.
Front Pharmacol ; 12: 733577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621169

RESUMEN

This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of -68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.

3.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073075

RESUMEN

Nucleic acid sequences able to adopt a G-quadruplex conformation are overrepresented within the human genome. This evidence strongly suggests that these genomic regions have been evolutionary selected to play a pivotal role in several aspects of cell biology. In the present review article, we provide an overview on the biological impact of targeting G-quadruplexes in cancer. A variety of small molecules showing good G-quadruplex stabilizing properties has been reported to exert an antitumor activity in several preclinical models of human cancers. Moreover, promiscuous binders and multiple targeting G-quadruplex ligands, cancer cell defense responses and synthetic lethal interactions of G-quadruplex targeting have been also highlighted. Overall, evidence gathered thus far indicates that targeting G-quadruplex may represent an innovative and fascinating therapeutic approach for cancer. The continued methodological improvements, the development of specific tools and a careful consideration of the experimental settings in living systems will be useful to deepen our knowledge of G-quadruplex biology in cancer, to better define their role as therapeutic targets and to help design and develop novel and reliable G-quadruplex-based anticancer strategies.


Asunto(s)
Antineoplásicos/farmacología , G-Cuádruplex/efectos de los fármacos , Neoplasias/genética , Animales , Línea Celular Tumoral , Humanos , Ligandos
4.
J Chem Inf Model ; 61(6): 3091-3108, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-33998810

RESUMEN

Janus kinases (JAKs) are a family of proinflammatory enzymes able to mediate the immune responses and the inflammatory cascade by modulating multiple cytokine expressions as well as various growth factors. In the present study, the inhibition of the JAK-signal transducer and activator of transcription (STAT) signaling pathway is explored as a potential strategy for treating autoimmune and inflammatory disorders. A computationally driven approach aimed at identifying novel JAK inhibitors based on molecular topology, docking, and molecular dynamics simulations was carried out. For the best candidates selected, the inhibitory activity against JAK2 was evaluated in vitro. Two hit compounds with a novel chemical scaffold, 4 (IC50 = 0.81 µM) and 7 (IC50 = 0.64 µM), showed promising results when compared with the reference drug Tofacitinib (IC50 = 0.031 µM).


Asunto(s)
Quinasas Janus , Inhibidores de Proteínas Quinasas , Quinasas Janus/metabolismo , Ligandos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...