Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Zebrafish ; 18(4): 252-264, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34227897

RESUMEN

Metals and metalloids are integral to biological processes and play key roles in physiology and metabolism. Nonetheless, overexposure to some metals or lack of others can lead to serious health consequences. In this study, eight zebrafish facilities collaborated to generate a multielement analysis of their centralized recirculating water systems. We report a first set of average concentrations for 46 elements detected in zebrafish facilities. Our results help to establish an initial baseline for trouble-shooting purposes, and in general for safe ranges of metal concentrations in recirculating water systems, supporting reproducible scientific research outcomes with zebrafish.


Asunto(s)
Metaloides , Contaminantes Químicos del Agua , Animales , Metaloides/análisis , Metaloides/metabolismo , Agua , Contaminantes Químicos del Agua/análisis , Pez Cebra/metabolismo
2.
Sci Rep ; 11(1): 4142, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602989

RESUMEN

Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.


Asunto(s)
Rayos gamma/efectos adversos , ARN no Traducido/genética , Pez Cebra/genética , Animales , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Gametogénesis/genética , Gametogénesis/efectos de la radiación , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Transcriptoma/genética , Transcriptoma/efectos de la radiación
3.
Environ Res ; 190: 109930, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32738623

RESUMEN

Ionizing radiation is known to induce oxidative stress and DNA damage as well as epigenetic effects in aquatic organisms. Epigenetic changes can be part of the adaptive responses to protect organisms from radiation-induced damage, or act as drivers of toxicity pathways leading to adverse effects. To investigate the potential roles of epigenetic mechanisms in low-dose ionizing radiation-induced stress responses, an ecologically relevant crustacean, adult Daphnia magna were chronically exposed to low and medium level external 60Co gamma radiation ranging from 0.4, 1, 4, 10, and 40 mGy/h for seven days. Biological effects at the molecular (global DNA methylation, histone modification, gene expression), cellular (reactive oxygen species formation), tissue/organ (ovary, gut and epidermal histology) and organismal (fecundity) levels were investigated using a suite of effect assessment tools. The results showed an increase in global DNA methylation associated with loci-specific alterations of histone H3K9 methylation and acetylation, and downregulation of genes involved in DNA methylation, one-carbon metabolism, antioxidant defense, DNA repair, apoptosis, calcium signaling and endocrine regulation of development and reproduction. Temporal changes of reactive oxygen species (ROS) formation were also observed with an apparent transition from ROS suppression to induction from 2 to 7 days after gamma exposure. The cumulative fecundity, however, was not significantly changed by the gamma exposure. On the basis of the new experimental evidence and existing knowledge, a hypothetical model was proposed to provide in-depth mechanistic understanding of the roles of epigenetic mechanisms in low dose ionizing radiation induced stress responses in D. magna.


Asunto(s)
Daño del ADN , Daphnia , Animales , Daphnia/genética , Epigénesis Genética , Femenino , Rayos gamma , Estrés Oxidativo
4.
Epigenetics Chromatin ; 13(1): 5, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051014

RESUMEN

BACKGROUND: Recent studies indicate that exposure to environmental chemicals may increase susceptibility to developing metabolic diseases. This susceptibility may in part be caused by changes to the epigenetic landscape which consequently affect gene expression and lead to changes in lipid metabolism. The epigenetic modifier enhancer of zeste 2 (Ezh2) is a histone H3K27 methyltransferase implicated to play a role in lipid metabolism and adipogenesis. In this study, we used the zebrafish (Danio rerio) to investigate the role of Ezh2 on lipid metabolism and chromatin status following developmental exposure to the Ezh1/2 inhibitor PF-06726304 acetate. We used the environmental chemical tributyltin (TBT) as a positive control, as this chemical is known to act on lipid metabolism via EZH-mediated pathways in mammals. RESULTS: Zebrafish embryos (0-5 days post-fertilization, dpf) exposed to non-toxic concentrations of PF-06726304 acetate (5 µM) and TBT (1 nM) exhibited increased lipid accumulation. Changes in chromatin were analyzed by the assay for transposase-accessible chromatin sequencing (ATAC-seq) at 50% epiboly (5.5 hpf). We observed 349 altered chromatin regions, predominantly located at H3K27me3 loci and mostly more open chromatin in the exposed samples. Genes associated to these loci were linked to metabolic pathways. In addition, a selection of genes involved in lipid homeostasis, adipogenesis and genes specifically targeted by PF-06726304 acetate via altered chromatin accessibility were differentially expressed after TBT and PF-06726304 acetate exposure at 5 dpf, but not at 50% epiboly stage. One gene, cebpa, did not show a change in chromatin, but did show a change in gene expression at 5 dpf. Interestingly, underlying H3K27me3 marks were significantly decreased at this locus at 50% epiboly. CONCLUSIONS: Here, we show for the first time the applicability of ATAC-seq as a tool to investigate toxicological responses in zebrafish. Our analysis indicates that Ezh2 inhibition leads to a partial primed state of chromatin linked to metabolic pathways which results in gene expression changes later in development, leading to enhanced lipid accumulation. Although ATAC-seq seems promising, our in-depth assessment of the cebpa locus indicates that we need to consider underlying epigenetic marks as well.


Asunto(s)
Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Metabolismo de los Lípidos , Proteínas de Pez Cebra/metabolismo , Adipogénesis , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cromatina/química , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos de Trialquiltina/farmacología , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores
5.
Lab Anim ; 54(3): 213-224, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31510859

RESUMEN

This article provides recommendations for the care of laboratory zebrafish (Danio rerio) as part of the further implementation of Annex A to the European Convention on the protection of vertebrate animals used for experimental and other scientific purposes, EU Commission Recommendation 2007/526/EC and the fulfilment of Article 33 of EU Directive 2010/63, both concerning the housing and care of experimental animals. The recommendations provide guidance on best practices and ranges of husbandry parameters within which zebrafish welfare, as well as reproducibility of experimental procedures, are assured. Husbandry procedures found today in zebrafish facilities are numerous. While the vast majority of these practices are perfectly acceptable in terms of zebrafish physiology and welfare, the reproducibility of experimental results could be improved by further standardisation of husbandry procedures and exchange of husbandry information between laboratories. Standardisation protocols providing ranges of husbandry parameters are likely to be more successful and appropriate than the implementation of a set of fixed guidance values neglecting the empirically successful daily routines of many facilities and will better reflect the wide range of environmental parameters that characterise the natural habitats occupied by zebrafish. A joint working group on zebrafish housing and husbandry recommendations, with members of the European Society for Fish Models in Biology and Medicine (EUFishBioMed) and of the Federation of European Laboratory Animal Science Associations (FELASA) has been given a mandate to provide guidelines based on a FELASA list of parameters, 'Terms of Reference'.


Asunto(s)
Crianza de Animales Domésticos/normas , Animales de Laboratorio/fisiología , Guías como Asunto , Vivienda para Animales/normas , Ciencia de los Animales de Laboratorio/normas , Pez Cebra/fisiología , Crianza de Animales Domésticos/métodos , Bienestar del Animal/normas , Animales
6.
Environ Epigenet ; 5(3): dvz016, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31528364

RESUMEN

The water flea Daphnia magna is a keystone species in freshwater ecosystems and has been widely used as a model organism in environmental ecotoxicology. This aquatic crustacean is sensitive to environmental stressors and displays considerable plasticity in adapting to changing environmental conditions. Part of this plasticity may be due to epigenetic regulation of gene expression, including changes to DNA methylation and histone modifications. Because of the generally hypomethylated genome of this species, we hypothesized that the histone code may have an essential role in the epigenetic control and that histone modifications might be an early marker for stress. This study aims to characterize the epigenetic, transcriptional and phenotypic responses and their causal linkages in directly exposed adult (F0) Daphnia and peritoneal exposed neonates (F1) after a chronic (7-day) exposure to a sublethal concentration (10 mg/l) of 5-azacytidine, a well-studied vertebrate DNA methylation inhibitor. Exposure of the F0 generation significantly reduced the cumulative fecundity, accompanied with differential expression of genes in the one-carbon-cycle metabolic pathway. In the epigenome of the F0 generation, a decrease in global DNA methylation, but no significant changes on H3K4me3 or H3K27me3, were observed. In the F1 offspring generation, changes in gene expression, a significant reduction in global DNA methylation and changes in histone modifications were identified. The results indicate that exposure during adulthood may result in more pronounced effects on early development in the offspring generation, though interpretation of the data should be carefully done since both the exposure regime and developmental period is different in the two generations examined. The obtained results improve our understanding of crustacean epigenetics and the tools developed may promote use of epigenetic markers in hazard assessment of environmental stressors.

7.
Zebrafish ; 16(3): 329-330, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30835163

RESUMEN

The Nordic zebrafish and husbandry meeting took place at Karolinska Institutet in Stockholm, November 7-9, 2018. More than 120 scientists from Europe joined this meeting, which also attracted world-leading keynote speakers such as Zoltan Varga, Didier Stainier, and Hernán Lopez-Schier. The meeting comprised both scientific as well as zebrafish husbandry and animal welfare sessions. This combination led to fruitful discussions, new collaborations as well as in the formation of a working group that will review and compile evidence-based husbandry guidelines for the local authorities. The success of this meeting emphasizes in general that smaller local conferences provide an excellent platform to establish local networks, to build up and share local infrastructures as well as to provide knowledge and help to peer researchers.


Asunto(s)
Crianza de Animales Domésticos , Bienestar del Animal , Pez Cebra , Animales , Congresos como Asunto , Suecia
8.
PLoS One ; 14(2): e0212123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30759148

RESUMEN

Ionizing radiation is a recognized genotoxic agent, however, little is known about the role of the functional form of DNA in these processes. Post translational modifications on histone proteins control the organization of chromatin and hence control transcriptional responses that ultimately affect the phenotype. The purpose of this study was to investigate effects on chromatin caused by ionizing radiation in fish. Direct exposure of zebrafish (Danio rerio) embryos to gamma radiation (10.9 mGy/h for 3h) induced hyper-enrichment of H3K4me3 at the genes hnf4a, gmnn and vegfab. A similar relative hyper-enrichment was seen at the hnf4a loci of irradiated Atlantic salmon (Salmo salar) embryos (30 mGy/h for 10 days). At the selected genes in ovaries of adult zebrafish irradiated during gametogenesis (8.7 and 53 mGy/h for 27 days), a reduced enrichment of H3K4me3 was observed, which was correlated with reduced levels of histone H3 was observed. F1 embryos of the exposed parents showed hyper-methylation of H3K4me3, H3K9me3 and H3K27me3 on the same three loci, while these differences were almost negligible in F2 embryos. Our results from three selected loci suggest that ionizing radiation can affect chromatin structure and organization, and that these changes can be detected in F1 offspring, but not in subsequent generations.


Asunto(s)
Rayos gamma/efectos adversos , Sitios Genéticos/efectos de la radiación , Código de Histonas/efectos de la radiación , Salmo salar/genética , Pez Cebra/genética , Animales , Desarrollo Embrionario/genética , Desarrollo Embrionario/efectos de la radiación , Gametogénesis/efectos de la radiación , Sitios Genéticos/genética , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Metilación/efectos de la radiación , Salmo salar/embriología , Salmo salar/fisiología , Pez Cebra/embriología , Pez Cebra/fisiología
9.
Sci Rep ; 8(1): 15373, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337673

RESUMEN

Ionizing radiation is known to cause DNA damage, yet the mechanisms underlying potential transgenerational effects of exposure have been scarcely studied. Previously, we observed effects in offspring of zebrafish exposed to gamma radiation during gametogenesis. Here, we hypothesize that these effects are accompanied by changes of DNA methylation possibly inherited by subsequent generations. We assessed DNA methylation in F1 embryos (5.5 hours post fertilization) with whole genome bisulfite sequencing following parental exposure to 8.7 mGy/h for 27 days and found 5658 differentially methylated regions (DMRs). DMRs were predominantly located at known regulatory regions, such as gene promoters and enhancers. Pathway analysis indicated the involvement of DMRs related to similar pathways found with gene expression analysis, such as development, apoptosis and cancers, which could be linked to previous observed developmental defects and genomic instability in the offspring. Follow up of 19 F1 DMRs in F2 and F3 embryos revealed persistent effects up to the F3 generation at 5 regions. These results indicate that ionizing radiation related effects in offspring can be linked to DNA methylation changes that partly can persist over generations. Monitoring DNA methylation could serve as a biomarker to provide an indication of ancestral exposures to ionizing radiation.


Asunto(s)
Metilación de ADN , Embrión no Mamífero/metabolismo , Epigénesis Genética/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Radiación Ionizante , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Daño del ADN , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de la radiación , Gametogénesis , Inestabilidad Genómica , Reproducción , Pez Cebra/fisiología
10.
Ecotoxicol Environ Saf ; 154: 19-26, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29453161

RESUMEN

The biological effects of gamma radiation may exert damage beyond that of the individual through its deleterious effects on reproductive function. Impaired reproductive performance can result in reduced population size over consecutive generations. In a continued effort to investigate reproductive and heritable effects of ionizing radiation, we recently demonstrated adverse effects and genomic instability in progeny of parents exposed to gamma radiation. In the present study, genotoxicity and effects on the reproduction following subchronic exposure during a gametogenesis cycle to 60Co gamma radiation (27 days, 8.7 and 53 mGy/h, total doses 5.2 and 31 Gy) were investigated in the adult wild-type zebrafish (Danio rerio). A significant reduction in embryo production was observed one month after exposure in the 53 mGy/h exposure group compared to control and 8.7 mGy/h. One year later, embryo production was significantly lower in the 53 mGy/h group compared only to control, with observed sterility, accompanied by a regression of reproductive organs in 100% of the fish 1.5 years after exposure. Histopathological examinations revealed no significant changes in the testis in the 8.7 mGy/h group, while in 62.5% of females exposed to this dose rate the oogenesis was found to be only at the early previtellogenic stage. The DNA damage determined in whole blood, 1.5 years after irradiation, using a high throughput Comet assay, was significantly higher in the exposed groups (1.2 and 3-fold increase in 8.7 and 53 mGy/h females respectively; 3-fold and 2-fold increase in 8.7 and 53 mGy/h males respectively) compared to controls. A significantly higher number of micronuclei (4-5%) was found in erythrocytes of both the 8.7 and 53 mGy/h fish compared to controls. This study shows that gamma radiation at a dose rate of ≥ 8.7 mGy/h during gametogenesis causes adverse reproductive effects and persistent genotoxicity (DNA damage and increased micronuclei) in adult zebrafish.


Asunto(s)
Daño del ADN , Gametogénesis/efectos de la radiación , Rayos gamma/efectos adversos , Reproducción/efectos de los fármacos , Pez Cebra/genética , Animales , Ensayo Cometa , Relación Dosis-Respuesta en la Radiación , Femenino , Gametogénesis/genética , Inestabilidad Genómica/efectos de la radiación , Masculino , Óvulo/efectos de la radiación , Reproducción/genética , Testículo/efectos de la radiación , Pez Cebra/crecimiento & desarrollo
11.
Environ Pollut ; 234: 855-863, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29248853

RESUMEN

Ionizing radiation causes a variety of effects, including DNA damage associated to cancers. However, the effects in progeny from irradiated parents is not well documented. Using zebrafish as a model, we previously found that parental exposure to ionizing radiation is associated with effects in offspring, such as increased hatching rates, deformities, increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 h post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy) using mRNA sequencing. One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. Interestingly, one year after exposure newly derived embryos from the 8.7 mGy/h group exhibited 2390 (67.7% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, but were oppositely regulated. Pathways could be linked to effects in adults and offspring, such as DNA damage (via Atm signaling) and reproduction (via Gnrh signaling). Comparison with gene expression analysis in directly exposed embryos indicate transferrin a and cytochrome P450 2x6 as possible biomarkers for radiation response in zebrafish. Our results indicate latent effects following ionizing radiation exposure from the lower dose in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations.


Asunto(s)
Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/genética , Exposición a la Radiación/efectos adversos , Transcriptoma/efectos de la radiación , Pez Cebra/genética , Animales , Biomarcadores/metabolismo , Daño del ADN/efectos de la radiación , Femenino , Rayos gamma , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Radiación Ionizante , Reproducción/efectos de la radiación , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo
12.
Environ Res ; 159: 564-578, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892785

RESUMEN

Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi- and transgenerational studies to assess the environmental impact of gamma radiation.


Asunto(s)
Gametogénesis/efectos de la radiación , Rayos gamma/efectos adversos , Inestabilidad Genómica/efectos de la radiación , Reproducción/efectos de la radiación , Pez Cebra/fisiología , Animales , Embrión no Mamífero/efectos de la radiación , Pez Cebra/genética
13.
PLoS One ; 12(6): e0179259, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28628668

RESUMEN

Ionizing radiation from natural sources or anthropogenic activity has the potential to cause oxidative stress or genetic damage in living organisms, through the ionization and excitation of molecules and the subsequent production of free radicals and reactive oxygen species (ROS). The present work focuses on radiation-induced biological effects using the zebrafish (Danio rerio) vertebrate model. Changes in developmental traits and gene expression in zebrafish were assessed after continuous external gamma irradiation (0.4, 3.9, 15 and 38 mGy/h) with corresponding controls, starting at 2.5 hours post fertilization (hpf) and lasting through embryogenesis and the early larval stage. The lowest dose rate corresponded to recommended benchmarks at which adverse effects are not expected to occur in aquatic ecosystems (2-10 mGy/day). The survival observed at 96 hours post fertilization (hpf) in the 38 mGy/h group was significantly lower, while other groups showed no significant difference compared to controls. The total hatching was significantly lower from controls in the 15 mGy/h group and a delay in hatching onset in the 0.4 mGy/h group was observed. The deformity frequency was significantly increased by prolonged exposure duration at dose rates ≥ 0.4 mGy/h. Molecular responses analyzed by RNA-seq at gastrulation (5.5 hpf transcriptome) indicate that the radiation induced adverse effects occurred during the earliest stages of development. A dose-response relationship was found in the numbers of differentially regulated genes in exposure groups compared to controls at a total dose as low as 1.62 mGy. Ingenuity Pathway Analysis identified retinoic acid receptor activation, apoptosis, and glutathione mediated detoxification signaling as the most affected pathways in the lower dose rate (0.54 mGy/h), while eif2 and mTOR, i.e., involved in the modulation of angiogenesis, were most affected in higher dose rates (5.4 and 10.9 mGy/h). By comparing gene expression data, myc was found to be the most significant upstream regulator, followed by tp53, TNF, hnf4a, TGFb1 and cebpa, while crabp2b and vegfab were identified as most frequent downstream target genes. These genes are associated with various developmental processes. The present findings show that continuous gamma irradiation (≥ 0.54 mGy/h) during early gastrula causes gene expression changes that are linked to developmental defects in zebrafish embryos.


Asunto(s)
Rayos gamma , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Ecosistema , Embrión no Mamífero/metabolismo , Embrión no Mamífero/efectos de la radiación , Desarrollo Embrionario/genética , Desarrollo Embrionario/efectos de la radiación , Perfilación de la Expresión Génica , Larva/genética , Larva/metabolismo , Larva/efectos de la radiación , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
14.
Epigenetics Chromatin ; 10: 20, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28413451

RESUMEN

BACKGROUND: Exposure to environmental stressors during development may lead to latent and transgenerational adverse health effects. To understand the role of DNA methylation in these effects, we used zebrafish as a vertebrate model to investigate heritable changes in DNA methylation following chemical-induced stress during early development. We exposed zebrafish embryos to non-embryotoxic concentrations of the biologically active phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP, 30 µM) and the DNA methyltransferase 1 inhibitor 5-azacytidine (5AC, 10 µM). Direct, latent and transgenerational effects on DNA methylation were assessed using global, genome-wide and locus-specific DNA methylation analyses. RESULTS: Following direct exposure in zebrafish embryos from 0 to 6 days post-fertilization, genome-wide analysis revealed a multitude of differentially methylated regions, strongly enriched at conserved non-genic elements for both compounds. Pathways involved in adipogenesis were enriched with the putative obesogenic compound MEHP. Exposure to 5AC resulted in enrichment of pathways involved in embryonic development and transgenerational effects on larval body length. Locus-specific methylation analysis of 10 differentially methylated sites revealed six of these loci differentially methylated in sperm sampled from adult zebrafish exposed during development to 5AC, and in first and second generation larvae. With MEHP, consistent changes were found at 2 specific loci in first and second generation larvae. CONCLUSIONS: Our results suggest a functional role for DNA methylation on cis-regulatory conserved elements following developmental exposure to compounds. Effects on these regions are potentially transferred to subsequent generations.


Asunto(s)
Azacitidina/toxicidad , Metilación de ADN/efectos de los fármacos , ADN/metabolismo , Dietilhexil Ftalato/análogos & derivados , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Dietilhexil Ftalato/toxicidad , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Mutagénesis , Embarazo , Análisis de Secuencia de ADN , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
15.
J Toxicol Environ Health A ; 79(13-15): 538-48, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27484136

RESUMEN

A series of studies have assessed the occurrence, levels, and potential adverse effects of persistent organic pollutants (POP) in fish from Lake Mjøsa. In this lake, high levels of various POP were detected in biota. Fish from the nearby Lake Losna contain background levels of POP and served as reference (controls) in these studies. Significantly higher prevalence of mycobacteriosis and pathological changes were documented in burbot (Lota lota) from Mjøsa compared to burbot from Losna. Further, transcriptional profiling identified changes in gene expression in burbot from Mjøsa compared to burbot from Losna associated with drug metabolism enzymes and oxidative stress. POP extracted from burbot liver oil from the two lakes was used to expose zebrafish (Danio rerio) during two consecutive generations. During both generations, POP mixtures from both lakes increased the rate of mortality, induced earlier onset of puberty, and skewed sex ratio toward males. However, opposite effects on weight gain were found in exposure groups compared to controls during the two generations. Exposure to POP from both lakes was associated with suppression of ovarian follicle development. Analyses of genome-wide transcription profiling identified functional networks of genes associated with weight homeostasis, steroid hormone functions, and insulin signaling. In human cell studies using adrenocortical H295R and primary porcine theca and granulosa cells, exposure to lake extracts from both populations modulated steroid hormone production with significant difference from controls. The results suggest that POP from both lakes may possess the potential to induce endocrine disruption and may adversely affect health in wild fish.


Asunto(s)
Disruptores Endocrinos/toxicidad , Sistema Endocrino/efectos de los fármacos , Exposición a Riesgos Ambientales , Gadiformes/fisiología , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología , Animales , Monitoreo del Ambiente , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Aceites de Pescado/química , Gadiformes/genética , Gadiformes/microbiología , Lagos , Infecciones por Mycobacterium/epidemiología , Infecciones por Mycobacterium/microbiología , Infecciones por Mycobacterium/veterinaria , Noruega
16.
J Toxicol Environ Health A ; 79(13-15): 602-11, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27484141

RESUMEN

Apoptosis is an integral element of development that may also be initiated by environmental contaminants. The aim of the present study was to assess potential changes in the regulation of apoptotic genes in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POP). The mixture from Lake Mjøsa contained exceptionally high concentrations of polybrominated diphenyl ethers (PBDE), as well as relatively high levels of polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT). The mixture from Lake Losna contained background concentrations of POP. Genes involved in the apoptotic machinery were screened for their expression profile at four time points during embryonic development. Thirteen and 15 genes involved in apoptosis were found to be significantly upregulated in the high-exposure and background exposure groups, respectively, compared with controls. Modulation of apoptotic genes was restricted only to the first time point, which corresponds with the blastula stage. Although there were substantial differences in POP concentrations between mixtures, genes underlying the apoptosis process showed almost similar responses to the two mixtures. In both exposure groups the main executors of apoptosis p53, casp 2, casp 6, cassp 8, and BAX displayed upregulation compared to controls, suggesting that these POP induce apoptosis via a p53-dependent mechanism. Upregulation of genes that play a critical role in apoptosis suggests that disturbance of normal apoptotic signaling during gametogenesis and embryogenesis may be one of the central mechanisms involved in adverse reproductive effects produced by POP in zebrafish.


Asunto(s)
Apoptosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Apoptosis/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Pez Cebra/embriología
17.
Zebrafish ; 13(3): 230-1, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27096228

RESUMEN

A workshop to address husbandry and animal welfare was held during the 9th European Zebrafish Meeting in Oslo, Norway, from June 28 to July 2, 2015. The husbandry workshop took place on Monday, June 29, and was well attended by ∼100 audience members. It highlighted problems arising from the diversity of current husbandry practices and included presentations on recent efforts to find common husbandry and animal welfare standards from a variety of international contributors, from Norway, Portugal, the United Kingdom, as well as the United States and Japan. Presentations included zebrafish and medaka as representatives of aquatic species used in biomedical research and addressed a diverse range of topics such as proposed European guidelines for zebrafish husbandry, general fish facility health and husbandry standards, cryopreservation, publication standards, and feeding strategies. The workshop highlighted the desire to develop common husbandry standards for the aquatic research community across the world.


Asunto(s)
Crianza de Animales Domésticos , Bienestar del Animal , Pez Cebra/fisiología , Animales , Internacionalidad
18.
Zebrafish ; 13(2): 132-7, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26859625

RESUMEN

The 9th European Zebrafish Meeting took place recently in Oslo (June 28-July 2, 2015). A total of 650 participants came to hear the latest research news focused on the zebrafish, Danio rerio, and to its distant evolutionary relative medaka, Oryzias latipes. The packed program included keynote and plenary talks, short oral presentations and poster sessions, workshops, and strategic discussions. The meeting was a great success and revealed dramatically how important the zebrafish in particular has become as a model system for topics, such as developmental biology, functional genomics, biomedicine, toxicology, and drug development. A new emphasis was given to its potential as a model for aquaculture, a topic of great economic interest to the host country Norway and for the future global food supply in general. Zebrafish husbandry as well as its use in teaching were also covered in separate workshops. As has become a tradition in these meetings, there was a well-attended Wellcome Trust Sanger Institute and ZFIN workshop focused on Zebrafish Genome Resources on the first day. The full EZM 2015 program with abstracts can be read and downloaded from the EZM 2015 Web site zebrafish2015.org .


Asunto(s)
Acuicultura , Oryzias/genética , Pez Cebra/genética , Animales , Modelos Animales , Noruega
19.
NPJ Microgravity ; 2: 16010, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28725727

RESUMEN

Physiological modifications in near weightlessness, as experienced by astronauts during space flight, have been the subject of numerous studies. Various animal models have been used on space missions or in microgravity simulation on ground to understand the effects of gravity on living animals. Here, we used the zebrafish larvae as a model to study the effect of microgravity simulation on bone formation and whole genome gene expression. To simulate microgravity (sim-µg), we used two-dimensional (2D) clinorotation starting at 5 days post fertilization to assess skeletal formation after 5 days of treatment. To assess early, regulatory effects on gene expression, a single day clinorotation was performed. Clinorotation for 5 days caused a significant decrease of bone formation, as shown by staining for cartilage and bone structures. This effect was not due to stress, as assessed by measuring cortisol levels in treated larvae. Gene expression results indicate that 1-day simulated microgravity affected musculoskeletal, cardiovascular, and nuclear receptor systems. With free-swimming model organisms such as zebrafish larvae, the 2D clinorotation setup appears to be a very appropriate approach to sim-µg. We provide evidence for alterations in bone formation and other important biological functions; in addition several affected genes and pathways involved in bone, muscle or cardiovascular development are identified.

20.
PLoS One ; 10(6): e0126928, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26061167

RESUMEN

Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.


Asunto(s)
Gravitación , Hormonas/fisiología , Pez Cebra/anatomía & histología , Pez Cebra/fisiología , Animales , Desarrollo Embrionario , Pez Cebra/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...