Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
EBioMedicine ; 91: 104546, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37023531

RESUMEN

BACKGROUND: Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS: To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS: B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION: B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING: Found in acknowledgements.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Densidad Ósea , N-Acetilgalactosaminiltransferasas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos , Densidad Ósea/genética , Glucocorticoides/farmacología , Glicosilación , Humanos
2.
Biomolecules ; 12(8)2022 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-36009051

RESUMEN

Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of ß-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased ß-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/ß-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvß3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of ß-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvß3 and the activation of the WNT/ß-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Células Cultivadas , Humanos , Integrina alfaVbeta3/metabolismo , Músculo Liso Vascular/metabolismo , Insuficiencia Renal Crónica/metabolismo , Calcificación Vascular/genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
3.
Kidney Blood Press Res ; 47(6): 399-409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35339998

RESUMEN

BACKGROUND/AIMS: Vasopressin is a powerful stimulator of vascular calcification, augmenting osteogenic signaling in vascular smooth muscle cells (VSMCs) including upregulation of transcription factors such as core-binding factor α-1 (CBFA1), msh homeobox 2 (MSX2), and SRY-Box 9 (SOX9), as well as of tissue-nonspecific alkaline phosphatase (ALPL). Vasopressin-induced osteogenic signaling and calcification require the serum- and glucocorticoid-inducible kinase 1 (SGK1). Known effects of SGK1 include upregulation of Na+/H+ exchanger 1 (NHE1). NHE1 further participates in the regulation of reactive oxygen species (ROS). NHE1 has been shown to participate in the orchestration of bone mineralization. The present study, thus, explored whether vasopressin modifies NHE1 expression and ROS generation, as well as whether pharmacological inhibition of NHE1 disrupts vasopressin-induced osteogenic signaling and calcification in VSMCs. METHODS: Human aortic smooth muscle cells (HAoSMCs) were treated with vasopressin in the absence or presence of SGK1 silencing, SGK1 inhibitor GSK-650394, and NHE1 blocker cariporide. Transcript levels were determined by using quantitative real-time polymerase chain reaction, protein abundance by Western blotting, ROS generation with 2',7'-dichlorofluorescein diacetate fluorescence, and ALP activity and calcium content by using colorimetric assays. RESULTS: Vasopressin significantly enhanced the NHE1 transcript and protein levels in HAoSMCs, effects significantly blunted by SGK1 inhibition with GSK-650394 or SGK1 silencing. Vasopressin increased ROS accumulation, an effect significantly blocked by the NHE1 inhibitor cariporide. Vasopressin further significantly increased osteogenic markers CBFA1, MSX2, SOX9, and ALPL transcript levels, as well as ALP activity and calcium content in HAoSMCs, all effects significantly blunted by SGK1 silencing or in the presence of GSK-650394 or cariporide. CONCLUSION: Vasopressin stimulates NHE1 expression and ROS generation, an effect dependent on SGK1 and required for vasopressin-induced stimulation of osteogenic signaling and calcification of VSMCs.


Asunto(s)
Calcificación Fisiológica , Calcificación Vascular , Calcio/metabolismo , Células Cultivadas , Humanos , Miocitos del Músculo Liso , Especies Reactivas de Oxígeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Calcificación Vascular/metabolismo , Vasopresinas/metabolismo
4.
Cells ; 10(11)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34831306

RESUMEN

In diabetic patients, medial vascular calcification is common and associated with increased cardiovascular mortality. Excessive glucose concentrations can activate the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB) and trigger pro-calcific effects in vascular smooth muscle cells (VSMCs), which may actively augment vascular calcification. Zinc is able to mitigate phosphate-induced VSMC calcification. Reduced serum zinc levels have been reported in diabetes mellitus. Therefore, in this study the effects of zinc supplementation were investigated in primary human aortic VSMCs exposed to excessive glucose concentrations. Zinc treatment was found to abrogate the stimulating effects of high glucose on VSMC calcification. Furthermore, zinc was found to blunt the increased expression of osteogenic and chondrogenic markers in high glucose-treated VSMCs. High glucose exposure was shown to activate NF-kB in VSMCs, an effect that was blunted by additional zinc treatment. Zinc was further found to increase the expression of TNFα-induced protein 3 (TNFAIP3) in high glucose-treated VSMCs. The silencing of TNFAIP3 was shown to abolish the protective effects of zinc on high glucose-induced NF-kB-dependent transcriptional activation, osteogenic marker expression, and the calcification of VSMCs. Silencing of the zinc-sensing receptor G protein-coupled receptor 39 (GPR39) was shown to abolish zinc-induced TNFAIP3 expression and the effects of zinc on high glucose-induced osteogenic marker expression. These observations indicate that zinc may be a protective factor during vascular calcification in hyperglycemic conditions.


Asunto(s)
Glucosa/toxicidad , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Osteogénesis/efectos de los fármacos , Zinc/farmacología , Aorta/patología , Biomarcadores/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , FN-kappa B/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Biochem Biophys Res Commun ; 582: 28-34, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34678593

RESUMEN

BACKGROUND: Vascular calcification is common in chronic kidney disease (CKD) and associated with increased cardiovascular mortality. Aldosterone has been implicated as an augmenting factor in the progression of vascular calcification. The present study further explored putative beneficial effects of aldosterone inhibition by the mineralocorticoid receptor antagonist spironolactone on vascular calcification in CKD. METHODS: Serum calcification propensity was determined in serum samples from the MiREnDa trial, a prospective, randomized controlled clinical trial to investigate efficacy and safety of spironolactone in maintenance hemodialysis patients. Experiments were conducted in mice with subtotal nephrectomy and cholecalciferol treatment, and in calcifying primary human aortic smooth muscle cells (HAoSMCs). RESULTS: Serum calcification propensity was improved by spironolactone treatment in patients on hemodialysis from the MiREnDa trial. In mouse models and HAoSMCs, spironolactone treatment ameliorated vascular calcification and expression of osteogenic markers. CONCLUSIONS: These observations support a putative benefit of spironolactone treatment in CKD-associated vascular calcification. Further research is required to investigate possible improvements in cardiovascular outcomes by spironolactone and whether the benefits outweigh the risks in patients with CKD.


Asunto(s)
Aldosterona/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Diálisis Renal , Insuficiencia Renal Crónica/tratamiento farmacológico , Espironolactona/farmacología , Calcificación Vascular/tratamiento farmacológico , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Biomarcadores/metabolismo , Colecalciferol/administración & dosificación , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Expresión Génica , Humanos , Riñón/metabolismo , Riñón/patología , Riñón/cirugía , Ratones , Ratones Endogámicos DBA , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Nefrectomía/métodos , Cultivo Primario de Células , Estudios Prospectivos , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
6.
Pflugers Arch ; 473(12): 1899-1910, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34564739

RESUMEN

In chronic kidney disease (CKD), hyperphosphatemia promotes medial vascular calcification, a process augmented by osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). VSMC function is regulated by sympathetic innervation, and these cells express α- and ß-adrenergic receptors. The present study explored the effects of ß2-adrenergic stimulation by isoproterenol on VSMC calcification. Experiments were performed in primary human aortic VSMCs treated with isoproterenol during control or high phosphate conditions. As a result, isoproterenol dose dependently up-regulated the expression of osteogenic markers core-binding factor α-1 (CBFA1) and tissue-nonspecific alkaline phosphatase (ALPL) in VSMCs. Furthermore, prolonged isoproterenol exposure augmented phosphate-induced calcification of VSMCs. Isoproterenol increased the activation of PKA and CREB, while knockdown of the PKA catalytic subunit α (PRKACA) or of CREB1 genes was able to suppress the pro-calcific effects of isoproterenol in VSMCs. ß2-adrenergic receptor silencing or inhibition with the selective antagonist ICI 118,551 blocked isoproterenol-induced osteogenic signalling in VSMCs. The present observations imply a pro-calcific effect of ß2-adrenergic overstimulation in VSMCs, which is mediated, at least partly, by PKA/CREB signalling. These observations may support a link between sympathetic overactivity in CKD and vascular calcification.


Asunto(s)
Adrenérgicos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/fisiología , Calcificación Vascular/metabolismo , Aorta/metabolismo , Calcio/metabolismo , Transdiferenciación Celular/fisiología , Células Cultivadas , Humanos , Osteogénesis/fisiología , Fosfatos/metabolismo , Insuficiencia Renal Crónica/metabolismo
7.
Clin Sci (Lond) ; 135(3): 515-534, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33479769

RESUMEN

In chronic kidney disease (CKD), hyperphosphatemia is a key factor promoting medial vascular calcification, a common complication associated with cardiovascular events and high mortality. Vascular calcification involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs), but the complex signaling events inducing pro-calcific pathways are incompletely understood. The present study investigated the role of acid sphingomyelinase (ASM)/ceramide as regulator of VSMC calcification. In vitro, both, bacterial sphingomyelinase and phosphate increased ceramide levels in VSMCs. Bacterial sphingomyelinase as well as ceramide supplementation stimulated osteo-/chondrogenic transdifferentiation during control and high phosphate conditions and augmented phosphate-induced calcification of VSMCs. Silencing of serum- and glucocorticoid-inducible kinase 1 (SGK1) blunted the pro-calcific effects of bacterial sphingomyelinase or ceramide. Asm deficiency blunted vascular calcification in a cholecalciferol-overload mouse model and ex vivo isolated-perfused arteries. In addition, Asm deficiency suppressed phosphate-induced osteo-/chondrogenic signaling and calcification of cultured VSMCs. Treatment with the functional ASM inhibitors amitriptyline or fendiline strongly blunted pro-calcific signaling pathways in vitro and in vivo. In conclusion, ASM/ceramide is a critical upstream regulator of vascular calcification, at least partly, through SGK1-dependent signaling. Thus, ASM inhibition by repurposing functional ASM inhibitors to reduce the progression of vascular calcification during CKD warrants further study.


Asunto(s)
Transdiferenciación Celular , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingomielina Fosfodiesterasa/farmacología , Calcificación Vascular/patología , Amitriptilina/farmacología , Animales , Células Cultivadas , Ceramidas/metabolismo , Condrogénesis/efectos de los fármacos , Fendilina/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Fosfatos/farmacología
8.
Clin Sci (Lond) ; 135(1): 201-227, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33416083

RESUMEN

Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Inflamación/metabolismo , Inflamación/patología , Fosfatos/metabolismo , Calcio/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Insuficiencia Renal Crónica/metabolismo
9.
Cardiovasc Res ; 117(3): 930-941, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32243494

RESUMEN

AIMS: Uromodulin is produced exclusively in the kidney and secreted into both urine and blood. Serum levels of uromodulin are correlated with kidney function and reduced in chronic kidney disease (CKD) patients, but physiological functions of serum uromodulin are still elusive. This study investigated the role of uromodulin in medial vascular calcification, a key factor associated with cardiovascular events and mortality in CKD patients. METHODS AND RESULTS: Experiments were performed in primary human (HAoSMCs) and mouse (MOVAS) aortic smooth muscle cells, cholecalciferol overload and subtotal nephrectomy mouse models and serum from CKD patients. In three independent cohorts of CKD patients, serum uromodulin concentrations were inversely correlated with serum calcification propensity. Uromodulin supplementation reduced phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. In human serum, pro-inflammatory cytokines tumour necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) co-immunoprecipitated with uromodulin. Uromodulin inhibited TNFα and IL-1ß-induced osteo-/chondrogenic signalling and activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated ß cells (NF-kB) as well as phosphate-induced NF-kB-dependent transcriptional activity in HAoSMCs. In vivo, adeno-associated virus (AAV)-mediated overexpression of uromodulin ameliorated vascular calcification in mice with cholecalciferol overload. Conversely, cholecalciferol overload-induced vascular calcification was aggravated in uromodulin-deficient mice. In contrast, uromodulin overexpression failed to reduce vascular calcification during renal failure in mice. Carbamylated uromodulin was detected in serum of CKD patients and uromodulin carbamylation inhibited its anti-calcific properties in vitro. CONCLUSIONS: Uromodulin counteracts vascular osteo-/chondrogenic transdifferentiation and calcification, at least in part, through interference with cytokine-dependent pro-calcific signalling. In CKD, reduction and carbamylation of uromodulin may contribute to vascular pathology.


Asunto(s)
Transdiferenciación Celular , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Insuficiencia Renal Crónica/sangre , Uromodulina/sangre , Calcificación Vascular/prevención & control , Adulto , Anciano , Animales , Aorta/inmunología , Aorta/metabolismo , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Persona de Mediana Edad , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/inmunología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/inmunología , Osteogénesis , Fenotipo , Carbamilación de Proteína , Insuficiencia Renal Crónica/inmunología , Transducción de Señal , Uromodulina/genética , Uromodulina/farmacología , Calcificación Vascular/sangre , Calcificación Vascular/inmunología , Adulto Joven
10.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003561

RESUMEN

In diabetes mellitus, hyperglycemia promotes the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) to enhance medial vascular calcification, a common complication strongly associated with cardiovascular disease and mortality. The mechanisms involved are, however, still poorly understood. Therefore, the present study explored the potential role of serum- and glucocorticoid-inducible kinase 1 (SGK1) during vascular calcification promoted by hyperglycemic conditions. Exposure to high-glucose conditions up-regulated the SGK1 expression in primary human aortic VSMCs. High glucose increased osteogenic marker expression and activity and, thus, promoted the osteogenic transdifferentiation of VSMCs, effects significantly suppressed by additional treatment with the SGK1 inhibitor EMD638683. Moreover, high glucose augmented the mineralization of VSMCs in the presence of calcification medium, effects again significantly reduced by SGK1 inhibition. Similarly, SGK1 knockdown blunted the high glucose-induced osteogenic transdifferentiation of VSMCs. The osteoinductive signaling promoted by high glucose required SGK1-dependent NF-kB activation. In addition, advanced glycation end products (AGEs) increased the SGK1 expression in VSMCs, and SGK1 inhibition was able to interfere with AGEs-induced osteogenic signaling. In conclusion, SGK1 is up-regulated and mediates, at least partly, the osteogenic transdifferentiation and calcification of VSMCs during hyperglycemic conditions. Thus, SGK1 inhibition may reduce the development of vascular calcification promoted by hyperglycemia in diabetes.


Asunto(s)
Calcinosis/genética , Diabetes Mellitus/genética , Hiperglucemia/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Serina-Treonina Quinasas/genética , Aorta/crecimiento & desarrollo , Aorta/metabolismo , Aorta/patología , Benzamidas/farmacología , Calcinosis/metabolismo , Calcinosis/patología , Transdiferenciación Celular/genética , Diabetes Mellitus/patología , Glucosa/efectos adversos , Productos Finales de Glicación Avanzada/genética , Humanos , Hidrazinas/farmacología , Hiperglucemia/patología , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Osteogénesis/genética , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Transducción de Señal/genética
11.
J Mol Med (Berl) ; 98(7): 985-997, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32488546

RESUMEN

In chronic kidney disease, hyperphosphatemia is a key pathological factor promoting medial vascular calcification, a common complication associated with cardiovascular events and mortality. This active pathophysiological process involves osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs) via complex intracellular mechanisms that are still incompletely understood. Little is known about the effects of phosphate on the bioenergetic profile of VSMCs during the onset of this process. Therefore, the present study explored the effects of the phosphate donor ß-glycerophosphate on cellular bioenergetics of VSMCs. Mitochondrial and glycolytic functions were determined utilizing extracellular flux analysis in primary human aortic VSMCs following exposure to ß-glycerophosphate. In VSMCs, ß-glycerophosphate increased basal respiration, mitochondrial ATP production as well as proton leak and decreased spare respiratory capacity and coupling efficiency, but did not modify non-mitochondrial or maximal respiration. ß-Glycerophosphate-treated VSMCs had higher ability to increase mitochondrial glutamine and long-chain fatty acid usage as oxidation substrates to meet their energy demand. ß-Glycerophosphate did not modify glycolytic function or basal and glycolytic proton efflux rate. In contrast, ß-glycerophosphate increased non-glycolytic acidification. ß-Glycerophosphate-treated VSMCs had a more oxidative and less glycolytic phenotype, but a reduced ability to respond to stressed conditions via mitochondrial respiration. Moreover, compounds targeting components of mitochondrial respiration modulated ß-glycerophosphate-induced oxidative stress, osteo-/chondrogenic signalling and mineralization of VSMCs. In conclusion, ß-glycerophosphate modifies key parameters of mitochondrial function and cellular bioenergetics in VSMCs that may contribute to the onset of phenotypical transdifferentiation and calcification. These observations advance the understanding of the role of energy metabolism in VSMC physiology and pathophysiology of vascular calcification during hyperphosphatemia. KEY MESSAGES: ß-Glycerophosphate modifies key parameters of mitochondrial respiration in VSMCs. ß-Glycerophosphate induces changes in mitochondrial fuel choice in VSMCs. ß-Glycerophosphate promotes a more oxidative and less glycolytic phenotype of VSMCs. ß-Glycerophosphate triggers mitochondrial-dependent oxidative stress in VSMCs. Bioenergetics impact ß-glycerophosphate-induced VSMC calcification.


Asunto(s)
Metabolismo Energético/fisiología , Glicerofosfatos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Aorta/metabolismo , Transdiferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/fisiología , Humanos , Hiperfosfatemia/metabolismo , Osteogénesis/fisiología , Fosfatos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/fisiología , Calcificación Vascular/metabolismo
12.
Pflugers Arch ; 472(8): 1093-1102, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32556706

RESUMEN

Diabetes and chronic kidney disease (CKD) both trigger vascular osteogenic signaling and calcification leading to early death by cardiovascular events. Osteogenic signaling involves upregulation of the transcription factors CBFA1, MSX2, and SOX9, as well as alkaline phosphatase (ALP), an enzyme fostering calcification by degrading the calcification inhibitor pyrophosphate. In CKD, osteogenic signaling is triggered by hyperphosphatemia, which upregulates the serum and glucocorticoid-inducible kinase SGK1, a strong stimulator of the Ca2+-channel ORAI1. The channel is activated by STIM1 and accomplishes store-operated Ca2+-entry (SOCE). The present study explored whether exposure of human aortic smooth muscle cells (HAoSMCs) to high extracellular glucose concentrations similarly upregulates ORAI1 and/or STIM1 expression, SOCE, and osteogenic signaling. To this end, HAoSMCs were exposed to high extracellular glucose concentrations (15 mM, 24 h) without or with additional exposure to the phosphate donor ß-glycerophosphate. Transcript levels were estimated using qRT-PCR, protein abundance using Western blotting, ALP activity using a colorimetric assay kit, calcium deposits utilizing Alizarin red staining, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin (1 µM). As a result, glucose enhanced the transcript levels of SGK1 and ORAI1, ORAI2, and STIM2, protein abundance of ORAI1, SOCE, the transcript levels of CBFA1, MSX2, SOX9, and ALPL, as well as calcium deposits. Moreover, glucose significantly augmented the stimulating effect of ß-glycerophosphate on transcript levels of SGK1 and ORAI1, SOCE, the transcript levels of osteogenic markers, as well as calcium deposits. ORAI1 inhibitor MRS1845 (10 µM) significantly blunted the glucose-induced upregulation of the CBFA1 and MSX2 transcript levels. In conclusion, the hyperglycemia of diabetes stimulates expression of SGK1 and ORAI1, thus, augmenting store-operated Ca2+-entry and osteogenic signaling in HAoSMCs.


Asunto(s)
Aorta/metabolismo , Calcio/metabolismo , Glucosa/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1/metabolismo , Osteogénesis/fisiología , Transducción de Señal/fisiología , Biomarcadores/metabolismo , Células Cultivadas , Diabetes Mellitus/metabolismo , Humanos , Hiperglucemia/metabolismo , Regulación hacia Arriba/fisiología
13.
Biochem Biophys Res Commun ; 523(1): 18-24, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31831178

RESUMEN

In chronic kidney disease, renal phosphate retention leads to hyperphosphatemia with subsequent vascular osteogenic signaling and calcification. Osteogenic signaling involves up-regulation of the transcription factors CBFA1, MSX2, and SOX9, as well as alkaline phosphatase (ALP), an enzyme stimulating calcification by degrading the calcification inhibitor pyrophosphate. Stimulation of osteogenic signaling and calcification by phosphate donor ß-glycerophosphate in human aortic smooth muscle cells (HAoSMCs) is attenuated by MgCl2, an effect mimicked by Ca2+-sensing receptor agonist GdCl3. Most recent observations revealed that the effect of ß-glycerophosphate on osteogenic signaling requires ORAI1, a Ca2+-channel accomplishing store-operated Ca2+-entry (SOCE), which is stimulated by Ca2+-sensor STIM1. The present study explored whether ORAI1 and/or STIM1 expression and, thus, SOCE and osteogenic signaling in HAoSMCs are sensitive to MgCl2 and/or GdCl3. To this end, transcript levels were estimated using q-RT-PCR, protein abundance with western blotting, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin (1  µM). As a result, 24 h exposure to ß-glycerophosphate (2 mM) significantly enhanced transcript levels of ORAI1 and STIM1 as well as SOCE, effects significantly blunted or virtually abrogated by 1.5 mM MgCl2 and by 50  µM GdCl3. In conclusion, MgCl2 and GdCl3 are powerful inhibitors of ORAI1 and STIM1 expression and store-operated Ca2+-entry, effects affecting osteogenic signalling in vascular smooth muscle cells.


Asunto(s)
Calcio/metabolismo , Cloruro de Magnesio/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Proteína ORAI1/biosíntesis , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Cultivadas , Gadolinio/farmacología , Humanos , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
14.
Cell Signal ; 64: 109414, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31505229

RESUMEN

Elevated transforming growth factor ß1 (TGFß1) levels are frequently observed in chronic kidney disease (CKD) patients. TGFß1 contributes to development of medial vascular calcification during hyperphosphatemia, a pathological process promoted by osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Vasorin is a transmembrane glycoprotein highly expressed in VSMCs, which is able to bind TGFß to inhibit TGFß signaling. Thus, the present study explored the effects of vasorin on osteo-/chondrogenic transdifferentiation and calcification of VSMCs. Primary human aortic smooth muscle cells (HAoSMCs) were treated with recombinant human TGFß1 or ß-glycerophosphate without or with recombinant human vasorin or vasorin gene silencing by siRNA. As a result, TGFß1 down-regulated vasorin mRNA expression in HAoSMCs. Vasorin supplementation inhibited TGFß1-induced pathway activation, SMAD2 phosphorylation and downstream target genes expression in HAoSMCs. Furthermore, treatment with exogenous vasorin blunted, while vasorin knockdown augmented TGFß1-induced osteo-/chondrogenic transdifferentiation of HAoSMCs. In addition, phosphate down-regulated vasorin mRNA expression in HAoSMCs. Phosphate-induced TGFß1 expression was not affected by addition of exogenous vasorin. Nonetheless, the phosphate-induced TGFß1 signaling, osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs were all blunted by vasorin. Conversely, silencing of vasorin aggravated osteoinduction in HAoSMCs during high phosphate conditions. Aortic vasorin expression was reduced in the hyperphosphatemic klotho-hypomorphic mouse model of CKD-related vascular calcification. In conclusion, vasorin, which suppresses TGFß1 signaling and protects against osteo-/chondrogenic transdifferentiation and calcification of VSMCs, is reduced by pro-calcifying conditions. Thus, vasorin is a novel key regulator of VSMC calcification and may represent a potential therapeutic target for vascular calcification during CKD.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Insuficiencia Renal Crónica/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Calcificación Vascular/metabolismo , Animales , Línea Celular , Transdiferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología
15.
J Mol Med (Berl) ; 97(10): 1465-1475, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31385016

RESUMEN

Compromised renal phosphate elimination in chronic kidney disease (CKD) leads to hyperphosphatemia, which in turn triggers osteo-/chondrogenic signaling in vascular smooth muscle cells (VSMCs) and vascular calcification. Osteo-/chondrogenic transdifferentiation of VSMCs leads to upregulation of the transcription factors MSX2, CBFA1, and SOX9 as well as tissue-nonspecific alkaline phosphatase (ALPL) which fosters calcification by degrading the calcification inhibitor pyrophosphate. Osteo-/chondrogenic signaling in VSMCs involves the serum- and glucocorticoid-inducible kinase SGK1. As shown in other cell types, SGK1 is a powerful stimulator of ORAI1, a Ca2+-channel accomplishing store-operated Ca2+-entry (SOCE). ORAI1 is stimulated following intracellular store depletion by the Ca2+ sensor STIM1. The present study explored whether phosphate regulates ORAI1 and/or STIM1 expression and, thus, SOCE in VSMCs. To this end, primary human aortic smooth muscle cells (HAoSMCs) were exposed to the phosphate donor ß-glycerophosphate. Transcript levels were estimated by qRT-PCR, protein abundance by western blotting, ALPL activity by colorimetry, calcification by alizarin red S staining, cytosolic Ca2+-concentration ([Ca2+]i) by Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following re-addition of extracellular Ca2+ after store depletion with thapsigargin. As a result, ß-glycerophosphate treatment increased ORAI1 and STIM1 transcript levels and protein abundance as well as SOCE in HAoSMCs. Additional treatment with ORAI1 inhibitor MRS1845 or SGK1 inhibitor GSK650394 virtually disrupted the effects of ß-glycerophosphate on SOCE. Moreover, the ß-glycerophosphate-induced MSX2, CBFA1, SOX9, and ALPL mRNA expression and activity in HAoSMCs were suppressed in the presence of the ORAI1 inhibitor and upon ORAI1 silencing. In conclusion, enhanced phosphate upregulates ORAI1 and STIM1 expression and store-operated Ca2+-entry, which participate in the orchestration of osteo-/chondrogenic signaling of VSMCs. KEY MESSAGES: • In aortic SMC, phosphate donor ß-glycerophosphate upregulates Ca2+ channel ORAI1. • In aortic SMC, ß-glycerophosphate upregulates ORAI1-activator STIM1. • In aortic SMC, ß-glycerophosphate upregulates store-operated Ca2+-entry (SOCE). • The effect of ß-glycerophosphate on SOCE is disrupted by ORAI1 inhibitor MRS1845. • Stimulation of osteogenic signaling is disrupted by MRS1845 and ORAI1 silencing.


Asunto(s)
Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1/metabolismo , Calcificación Vascular/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Aorta/citología , Transdiferenciación Celular/genética , Células Cultivadas , Expresión Génica , Glicerofosfatos/metabolismo , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Calcificación Vascular/genética
16.
Aging (Albany NY) ; 11(15): 5445-5462, 2019 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-31377747

RESUMEN

Medial vascular calcification occurs during the aging process and is strongly accelerated by chronic kidney disease (CKD). Elevated C-reactive protein (CRP) levels are associated with vascular calcification, cardiovascular events and mortality in CKD patients. CRP is an important promoter of vascular inflammation. Inflammatory processes are critically involved in initiation and progression of vascular calcification. Thus, the present study explored a possible impact of CRP on vascular calcification. We found that CRP promoted osteo-/chondrogenic transdifferentiation and aggravated phosphate-induced osteo-/chondrogenic transdifferentiation and calcification of primary human aortic smooth muscle cells (HAoSMCs). These effects were paralleled by increased cellular oxidative stress and corresponding pro-calcific downstream-signaling. Antioxidants or p38 MAPK inhibition suppressed CRP-induced osteo-/chondrogenic signaling and mineralization. Furthermore, silencing of Fc fragment of IgG receptor IIa (FCGR2A) blunted the pro-calcific effects of CRP. Vascular CRP expression was increased in the klotho-hypomorphic mouse model of aging as well as in HAoSMCs during calcifying conditions. In conclusion, CRP augments osteo-/chondrogenic transdifferentiation of vascular smooth muscle cells through mechanisms involving FCGR2A-dependent induction of oxidative stress. Thus, systemic inflammation may actively contribute to the progression of vascular calcification.


Asunto(s)
Envejecimiento/metabolismo , Envejecimiento/patología , Proteína C-Reactiva/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Animales , Transdiferenciación Celular/fisiología , Células Cultivadas , Condrogénesis/fisiología , Modelos Animales de Enfermedad , Glucuronidasa/genética , Glucuronidasa/metabolismo , Humanos , Proteínas Klotho , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Osteogénesis/fisiología , Estrés Oxidativo , ARN Interferente Pequeño/genética , Receptores de IgG/antagonistas & inhibidores , Receptores de IgG/genética , Receptores de IgG/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Transducción de Señal , Calcificación Vascular/etiología
17.
JCI Insight ; 4(10)2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31092728

RESUMEN

Although cardiovascular disease (CVD) is the leading cause of morbimortality worldwide, promising new drug candidates are lacking. We compared the arterial high-resolution proteome of patients with advanced versus early-stage CVD to predict, from a library of small bioactive molecules, drug candidates able to reverse this disease signature. Of the approximately 4000 identified proteins, 100 proteins were upregulated and 52 were downregulated in advanced-stage CVD. Arachidonyl trifluoromethyl ketone (AACOCF3), a cytosolic phospholipase A2 (cPLA2) inhibitor was predicted as the top drug able to reverse the advanced-stage CVD signature. Vascular cPLA2 expression was increased in patients with advanced-stage CVD. Treatment with AACOCF3 significantly reduced vascular calcification in a cholecalciferol-overload mouse model and inhibited osteoinductive signaling in vivo and in vitro in human aortic smooth muscle cells. In conclusion, using a systems biology approach, we have identified a potentially new compound that prevented typical vascular calcification in CVD in vivo. Apart from the clear effect of this approach in CVD, such strategy should also be able to generate novel drug candidates in other complex diseases.


Asunto(s)
Antígenos de Plaqueta Humana/metabolismo , Citosol/metabolismo , Biología de Sistemas , Calcificación Vascular/metabolismo , Calcificación Vascular/terapia , Adulto , Animales , Apolipoproteínas E/genética , Ácidos Araquidónicos , Aterosclerosis , Enfermedades Cardiovasculares , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Regulación hacia Arriba
18.
Curr Opin Nephrol Hypertens ; 28(4): 289-296, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30985336

RESUMEN

PURPOSE OF REVIEW: Chronic kidney disease (CKD) facilitates a unique environment to strongly accelerate vascular calcification - the pathological deposition of calcium-phosphate in the vasculature. These calcifications are associated with the excessive cardiovascular mortality of CKD patients. RECENT FINDINGS: Vascular calcification is a multifaceted active process, mediated, at least partly, by vascular smooth muscle cells. These cells are able to transdifferentiate into cells with osteo/chondrogenic properties, which exert multiple effects to facilitate vascular tissue mineralization. As the understanding of the underlying pathophysiology increases, first therapeutic concepts begin to emerge. SUMMARY: This brief review provides an overview on the so far known mechanisms involved in the initiation and progression of vascular calcification in CKD.


Asunto(s)
Insuficiencia Renal Crónica/complicaciones , Calcificación Vascular/etiología , Condrogénesis , Humanos , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología
19.
Cell Mol Life Sci ; 76(11): 2077-2091, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30887097

RESUMEN

Medial vascular calcification has emerged as a putative key factor contributing to the excessive cardiovascular mortality of patients with chronic kidney disease (CKD). Hyperphosphatemia is considered a decisive determinant of vascular calcification in CKD. A critical role in initiation and progression of vascular calcification during elevated phosphate conditions is attributed to vascular smooth muscle cells (VSMCs), which are able to change their phenotype into osteo-/chondroblasts-like cells. These transdifferentiated VSMCs actively promote calcification in the medial layer of the arteries by producing a local pro-calcifying environment as well as nidus sites for precipitation of calcium and phosphate and growth of calcium phosphate crystals. Elevated extracellular phosphate induces osteo-/chondrogenic transdifferentiation of VSMCs through complex intracellular signaling pathways, which are still incompletely understood. The present review addresses critical intracellular pathways controlling osteo-/chondrogenic transdifferentiation of VSMCs and, thus, vascular calcification during hyperphosphatemia. Elucidating these pathways holds a significant promise to open novel therapeutic opportunities counteracting the progression of vascular calcification in CKD.


Asunto(s)
Hiperfosfatemia/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal , Calcificación Vascular/metabolismo , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/metabolismo , Transdiferenciación Celular , Condrocitos/metabolismo , Condrocitos/patología , Regulación de la Expresión Génica , Humanos , Hiperfosfatemia/complicaciones , Hiperfosfatemia/genética , Hiperfosfatemia/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Ligando RANK/genética , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/genética , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Calcificación Vascular/complicaciones , Calcificación Vascular/genética , Calcificación Vascular/patología
20.
Pflugers Arch ; 471(6): 889-899, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30706178

RESUMEN

The serum- and glucocorticoid-inducible kinase 1 (SGK1) is a key regulator of osteo-/chondrogenic transdifferentiation and subsequent calcification of vascular smooth muscle cells (VSMCs). The phenotypical transdifferentiation of VSMCs is associated with increased interleukin-18 (IL-18) levels and generalized inflammation. Therefore, the present study investigated the possible involvement of SGK1 in IL-18-induced vascular calcification. Experiments were performed in primary human aortic smooth muscle cells (HAoSMCs) treated with recombinant human IL-18 protein in control or high phosphate conditions and following SGK1 knockdown by siRNA or pharmacological inhibition of SGK1, PI3K, and PDK1. As a result, IL-18 treatment increased SGK1 mRNA and protein expression in HAoSMCs. IL-18 upregulated SGK1 mRNA expression in a dose-dependent manner. This effect was paralleled by upregulation of the mRNA expression of MSX2 and CBFA1, osteogenic transcription factors, and of tissue-nonspecific alkaline phosphatase (ALPL), an osteogenic enzyme, as markers of increased osteo-/chondrogenic transdifferentiation. Phosphate treatment increased SGK1 and osteogenic markers mRNA expression as well as ALPL activity and induced calcification of HAoSMCs, all effects significantly augmented by additional treatment with IL-18. Conversely, silencing of SGK1 or cotreatment with the SGK1 inhibitor EMD638683 blunted the effects of IL-18 on osteo-/chondrogenic transdifferentiation and calcification of HAoSMCs. The procalcific effects of IL-18 were similarly suppressed in the presence of PI3K or PDK1 inhibitors. In conclusion, SGK1 expression is upregulated by IL-18 in VSMCs and SGK1 participates in the intracellular signaling of IL-18-induced osteo-/chondrogenic transdifferentiation of VSMCs. Thus, SGK1 may serve as therapeutic target to limit the progression of medial vascular calcification during vascular inflammation.


Asunto(s)
Transdiferenciación Celular , Proteínas Inmediatas-Precoces/metabolismo , Interleucina-18/fisiología , Miocitos del Músculo Liso/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Células Cultivadas , Humanos , Músculo Liso Vascular/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...