Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Biol ; 418(1): 108-123, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27474396

RESUMEN

The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease.


Asunto(s)
Células Acinares/citología , Hepatocitos/citología , Hepatopáncreas/embriología , Hígado/embriología , Páncreas Exocrino/embriología , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Diferenciación Celular/genética , Endodermo/citología , Proteínas de Unión a Ácidos Grasos/metabolismo , Técnicas de Silenciamiento del Gen , Factor Nuclear 4 del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Morfolinos/genética , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Transactivadores/genética , Factores de Transcripción/genética , Tripsina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
2.
Science ; 352(6281): 54-61, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26917594

RESUMEN

Defects in the mitochondrial respiratory chain (RC) underlie a spectrum of human conditions, ranging from devastating inborn errors of metabolism to aging. We performed a genome-wide Cas9-mediated screen to identify factors that are protective during RC inhibition. Our results highlight the hypoxia response, an endogenous program evolved to adapt to limited oxygen availability. Genetic or small-molecule activation of the hypoxia response is protective against mitochondrial toxicity in cultured cells and zebrafish models. Chronic hypoxia leads to a marked improvement in survival, body weight, body temperature, behavior, neuropathology, and disease biomarkers in a genetic mouse model of Leigh syndrome, the most common pediatric manifestation of mitochondrial disease. Further preclinical studies are required to assess whether hypoxic exposure can be developed into a safe and effective treatment for human diseases associated with mitochondrial dysfunction.


Asunto(s)
Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Mitocondrias/metabolismo , Oxígeno/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Anaerobiosis , Animales , Antimicina A/análogos & derivados , Antimicina A/farmacología , Proteínas Bacterianas , Biomarcadores/sangre , Temperatura Corporal , Peso Corporal , Proteína 9 Asociada a CRISPR , Modelos Animales de Enfermedad , Transporte de Electrón/efectos de los fármacos , Complejo I de Transporte de Electrón/genética , Endonucleasas , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Glicina/análogos & derivados , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Células K562 , Enfermedad de Leigh/patología , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Respiración , Supresión Genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/antagonistas & inhibidores , Pez Cebra
3.
Development ; 143(4): 609-22, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26884397

RESUMEN

Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function.


Asunto(s)
Hígado/embriología , Hígado/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Cannabinoides/metabolismo , Recuento de Células , Proliferación Celular/efectos de los fármacos , Cisteína/farmacología , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Metabolómica , Metionina/metabolismo , Mutación/genética , Tamaño de los Órganos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
4.
Stem Cell Reports ; 5(4): 471-9, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26365513

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.


Asunto(s)
Colecalciferol/farmacología , Proteínas Hedgehog/metabolismo , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Vitaminas/farmacología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Colecalciferol/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Eliminación de Gen , Células Madre Hematopoyéticas/citología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Smoothened , Vitaminas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
5.
Genome Res ; 22(8): 1541-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22555591

RESUMEN

Genetic mapping of mutations in model systems has facilitated the identification of genes contributing to fundamental biological processes including human diseases. However, this approach has historically required the prior characterization of informative markers. Here we report a fast and cost-effective method for genetic mapping using next-generation sequencing that combines single nucleotide polymorphism discovery, mutation localization, and potential identification of causal sequence variants. In contrast to prior approaches, we have developed a hidden Markov model to narrowly define the mutation area by inferring recombination breakpoints of chromosomes in the mutant pool. In addition, we created an interactive online software resource to facilitate automated analysis of sequencing data and demonstrate its utility in the zebrafish and mouse models. Our novel methodology and online tools will make next-generation sequencing an easily applicable resource for mutation mapping in all model systems.


Asunto(s)
Análisis Mutacional de ADN/métodos , Programas Informáticos , Pez Cebra/genética , Alelos , Animales , Mapeo Cromosómico/métodos , Cromosomas/genética , Cruzamientos Genéticos , Femenino , Frecuencia de los Genes , Genómica/métodos , Homocigoto , Masculino , Cadenas de Markov , Ratones , Ratones Endogámicos C57BL , Mutación , Polimorfismo de Nucleótido Simple , Recombinación Genética , Factores de Tiempo
6.
PLoS One ; 4(12): e8261, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20011517

RESUMEN

We have isolated and characterized a novel zebrafish pancreas mutant. Mutant embryos lack expression of isl1 and sst in the endocrine pancreas, but retain isl1 expression in the CNS. Non-endocrine endodermal gene expression is less affected in the mutant, with varying degrees of residual expression observed for pdx1, carbA, hhex, prox1, sid4, transferrin and ifabp. In addition, mutant embryos display a swollen pericardium and lack fin buds. Genetic mapping revealed a mutation resulting in a glycine to arginine change in the catalytic domain of the aldh1a2 gene, which is required for the production of retinoic acid from vitamin A. Comparison of our mutant (aldh1a2(um22)) to neckless (aldh1a2(i26)), a previously identified aldh1a2 mutant, revealed similarities in residual endodermal gene expression. In contrast, treatment with DEAB (diethylaminobenzaldehyde), a competitive reversible inhibitor of Aldh enzymes, produces a more severe phenotype with complete loss of endodermal gene expression, indicating that a source of Aldh activity persists in both mutants. We find that mRNA from the aldh1a2(um22) mutant allele is inactive, indicating that it represents a null allele. Instead, the residual Aldh activity is likely due to maternal aldh1a2, since we find that translation-blocking, but not splice-blocking, aldh1a2 morpholinos produce a phenotype similar to DEAB treatment. We conclude that Aldh1a2 is the primary Aldh acting during pancreas development and that maternal Aldh1a2 activity persists in aldh1a2(um22) and aldh1a2(i26) mutant embryos.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Páncreas/embriología , Páncreas/enzimología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Cigoto/enzimología , Aldehído Deshidrogenasa/antagonistas & inhibidores , Aldehído Deshidrogenasa/genética , Alelos , Animales , Secuencia de Bases , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Endodermo/efectos de los fármacos , Endodermo/metabolismo , Etilnitrosourea , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Datos de Secuencia Molecular , Mutagénesis/efectos de los fármacos , Mutación/genética , Oligonucleótidos Antisentido/farmacología , Páncreas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Cigoto/efectos de los fármacos , p-Aminoazobenceno/análogos & derivados , p-Aminoazobenceno/farmacología
7.
Dev Biol ; 304(1): 221-31, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17289013

RESUMEN

sonic hedgehog (shh) is expressed in anterior endoderm, where it is required to repress pancreas gene expression and to pattern the endoderm, but the pathway controlling endodermal shh expression is unclear. We find that expression of meis3, a TALE class homeodomain gene, coincides with shh expression in the endoderm of zebrafish embryos. Using a dominant negative construct or anti-sense morpholino oligos (MOs) to disrupt meis3 function, we observe ectopic insulin expression in anterior endoderm. This phenotype is also observed when meis3 MOs are targeted to the endoderm, suggesting that meis3 acts within the endoderm to restrict insulin expression. We also find that meis3 is required for endodermal shh expression, indicating that meis3 acts upstream of shh to restrict insulin expression. Loss of pbx4, a TALE gene encoding a Meis cofactor, produces the same phenotype as loss of meis3, consistent with Meis3 acting in a complex with Pbx4 as reported in other systems. Lastly, we observe a progressive anterior displacement of endoderm-derived organs upon disruption of meis3 or pbx4, apparently as a result of underdevelopment of the pharyngeal region. Our data indicate that meis3 and pbx4 regulate shh expression in anterior endoderm, thereby influencing patterning and growth of the foregut.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Unión al ADN/metabolismo , Sistema Digestivo/embriología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Hibridación in Situ , Insulina/metabolismo , Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...