Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 680, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263289

RESUMEN

The limited reserves of neutrophils are implicated in the susceptibility to infection in neonates, however the regulation of neutrophil kinetics in infections in early life remains poorly understood. Here we show that the developmental endothelial locus (DEL-1) is elevated in neonates and is critical for survival from neonatal polymicrobial sepsis, by supporting emergency granulopoiesis. Septic DEL-1 deficient neonate mice display low numbers of myeloid-biased multipotent and granulocyte-macrophage progenitors in the bone marrow, resulting in neutropenia, exaggerated bacteremia, and increased mortality; defects that are rescued by DEL-1 administration. A high IL-10/IL-17A ratio, observed in newborn sepsis, sustains tissue DEL-1 expression, as IL-10 upregulates while IL-17 downregulates DEL-1. Consistently, serum DEL-1 and blood neutrophils are elevated in septic adult and neonate patients with high serum IL-10/IL-17A ratio, and mortality is lower in septic patients with high serum DEL-1. Therefore, IL-10/DEL-1 axis supports emergency granulopoiesis, prevents neutropenia and promotes sepsis survival in early life.


Asunto(s)
Interleucina-10 , Sepsis Neonatal , Neutropenia , Sepsis , Adulto , Animales , Humanos , Ratones , Hematopoyesis , Interleucina-17 , Recién Nacido
3.
Lancet Diabetes Endocrinol ; 11(9): 675-693, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524103

RESUMEN

Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.


Asunto(s)
Enfermedades Metabólicas , Virosis , Humanos , Relevancia Clínica , Virosis/complicaciones , Enfermedades Metabólicas/epidemiología , Salud Pública
4.
Elife ; 122023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37449973

RESUMEN

The hypothalamus-pituitary-adrenal (HPA) axis is activated in response to inflammation leading to increased production of anti-inflammatory glucocorticoids by the adrenal cortex, thereby representing an endogenous feedback loop. However, severe inflammation reduces the responsiveness of the adrenal gland to adrenocorticotropic hormone (ACTH), although the underlying mechanisms are poorly understood. Here, we show by transcriptomic, proteomic, and metabolomic analyses that LPS-induced systemic inflammation triggers profound metabolic changes in steroidogenic adrenocortical cells, including downregulation of the TCA cycle and oxidative phosphorylation, in mice. Inflammation disrupts the TCA cycle at the level of succinate dehydrogenase (SDH), leading to succinate accumulation and disturbed steroidogenesis. Mechanistically, IL-1ß reduces SDHB expression through upregulation of DNA methyltransferase 1 (DNMT1) and methylation of the SDHB promoter. Consequently, increased succinate levels impair oxidative phosphorylation and ATP synthesis and enhance ROS production, leading to reduced steroidogenesis. Together, we demonstrate that the IL-1ß-DNMT1-SDHB-succinate axis disrupts steroidogenesis. Our findings not only provide a mechanistic explanation for adrenal dysfunction in severe inflammation, but also offer a potential target for therapeutic intervention.


Asunto(s)
Proteómica , Ácido Succínico , Ratones , Animales , Glucocorticoides/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Inflamación/metabolismo
5.
Sci Adv ; 9(29): eadf6710, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478183

RESUMEN

Corticosteroids regulate vital processes, including stress responses, systemic metabolism, and blood pressure. Here, we show that corticosteroid synthesis is related to the polyunsaturated fatty acid (PUFA) content of mitochondrial phospholipids in adrenocortical cells. Inhibition of the rate-limiting enzyme of PUFA synthesis, fatty acid desaturase 2 (FADS2), leads to perturbations in the mitochondrial lipidome and diminishes steroidogenesis. Consistently, the adrenocortical mitochondria of Fads2-/- mice fed a diet with low PUFA concentration are structurally impaired and corticoid levels are decreased. On the contrary, FADS2 expression is elevated in the adrenal cortex of obese mice, and plasma corticosterone is increased, which can be counteracted by dietary supplementation with the FADS2 inhibitor SC-26192 or icosapent ethyl, an eicosapentaenoic acid ethyl ester. In humans, FADS2 expression is elevated in aldosterone-producing adenomas compared to non-active adenomas or nontumorous adrenocortical tissue and correlates with expression of steroidogenic genes. Our data demonstrate that FADS2-mediated PUFA synthesis determines adrenocortical steroidogenesis in health and disease.


Asunto(s)
Adenoma , Ácido Graso Desaturasas , Humanos , Ratones , Animales , Ácido Graso Desaturasas/genética , Lipidómica , Ácidos Grasos Insaturados/metabolismo , Glándulas Suprarrenales/metabolismo
6.
Front Cell Neurosci ; 17: 1106287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213216

RESUMEN

Neurodegenerative diseases remain incompletely understood and therapies are needed. Stem cell-derived organoid models facilitate fundamental and translational medicine research. However, to which extent differential neuronal and glial pathologic processes can be reproduced in current systems is still unclear. Here, we tested 16 different chemical, physical, and cell functional manipulations in mouse retina organoids to further explore this. Some of the treatments induce differential phenotypes, indicating that organoids are competent to reproduce distinct pathologic processes. Notably, mouse retina organoids even reproduce a complex pathology phenotype with combined photoreceptor neurodegeneration and glial pathologies upon combined (not single) application of HBEGF and TNF, two factors previously associated with neurodegenerative diseases. Pharmacological inhibitors for MAPK signaling completely prevent photoreceptor and glial pathologies, while inhibitors for Rho/ROCK, NFkB, and CDK4 differentially affect them. In conclusion, mouse retina organoids facilitate reproduction of distinct and complex pathologies, mechanistic access, insights for further organoid optimization, and modeling of differential phenotypes for future applications in fundamental and translational medicine research.

7.
Nat Immunol ; 24(5): 757-766, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37012544

RESUMEN

Obesity-related metabolic organ inflammation contributes to cardiometabolic disorders. In obese individuals, changes in lipid fluxes and storage elicit immune responses in the adipose tissue (AT), including expansion of immune cell populations and qualitative changes in the function of these cells. Although traditional models of metabolic inflammation posit that these immune responses disturb metabolic organ function, studies now suggest that immune cells, especially AT macrophages (ATMs), also have important adaptive functions in lipid homeostasis in states in which the metabolic function of adipocytes is taxed. Adverse consequences of AT metabolic inflammation might result from failure to maintain local lipid homeostasis and long-term effects on immune cells beyond the AT. Here we review the complex function of ATMs in AT homeostasis and metabolic inflammation. Additionally, we hypothesize that trained immunity, which involves long-term functional adaptations of myeloid cells and their bone marrow progenitors, can provide a model by which metabolic perturbations trigger chronic systemic inflammation.


Asunto(s)
Tejido Adiposo , Macrófagos , Humanos , Homeostasis , Obesidad , Lípidos , Inflamación
8.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36982747

RESUMEN

White adipose tissue (WAT) fibrosis, characterized by an excess of extracellular (ECM) matrix components, is strongly associated with WAT inflammation and dysfunction due to obesity. Interleukin (IL)-13 and IL-4 were recently identified as critical mediators in the pathogenesis of fibrotic diseases. However, their role in WAT fibrosis is still ill-defined. We therefore established an ex vivo WAT organotypic culture system and demonstrated an upregulation of fibrosis-related genes and an increase of α-smooth muscle actin (αSMA) and fibronectin abundance upon dose-dependent stimulation with IL-13/IL-4. These fibrotic effects were lost in WAT lacking il4ra, which encodes for the underlying receptor controlling this process. Adipose tissue macrophages were found to play a key role in mediating IL-13/IL-4 effects in WAT fibrosis as their depletion through clodronate dramatically decreased the fibrotic phenotype. IL-4-induced WAT fibrosis was partly confirmed in mice injected intraperitoneally with IL-4. Furthermore, gene correlation analyses of human WAT samples revealed a strong positive correlation of fibrosis markers with IL-13/IL-4 receptors, whereas IL13 and IL4 correlations failed to confirm this association. In conclusion, IL-13 and IL-4 can induce WAT fibrosis ex vivo and partly in vivo, but their role in human WAT remains to be further elucidated.


Asunto(s)
Interleucina-13 , Interleucina-4 , Humanos , Ratones , Animales , Interleucina-13/genética , Interleucina-4/genética , Tejido Adiposo/patología , Tejido Adiposo Blanco/patología , Fibrosis
10.
J Chromatogr A ; 1671: 463021, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35421734

RESUMEN

The conditionally essential amino acid arginine and its metabolic products play an important role in different biological processes, such as metabolic regulation of the immune response, including macrophage activation and polarization and regulation of T cell function. Furthermore, the polyamine spermidine has a role in aging and age-related diseases. Additionally, altered polyamine metabolism may be associated with neurodegenerative diseases, while polyamine levels may present useful biomarkers associated with severity of Parkinson's disease or with progression of non-alcoholic fatty liver disease. In the present study, a simple, derivatization-free hydrophilic interaction liquid chromatography based tandem mass spectrometry (LC-MS/MS) method is described, that allows the accurate quantification of arginine and related amine, polyamine and acetylated polyamine metabolites in different experimental sample matrices, such as cell lysates, cell culture supernatants and tissues. Ten arginine metabolites, including citrulline, agmatine, ornithine, putrescine, spermidine, spermine, N1-acetylspermidine, N1-acetylspermine, N1,N12-diacetylspermine and arginine in conjunction with the metabolic cofactors S-adenosylhomocysteine and S-adenosylmethionine are simultaneously analyzed within a total LC-MS/MS run time of 9.5 min. The assay is suitable to quantify concentration ranges over multiple orders of magnitude for all metabolites with averaged accuracies observed at 103.2% ± 6.8%, 99.0% ± 4.2% and 100.4% ± 4.3% in cell lysates, cell culture supernatant and tissue extracts, respectively. Inter-day coefficients of variation ranged from 5.9 to 14.8% in cell lysates, 6.7 to 14.6% in cell culture supernatants and 5.3 to 12.0% in tissue extracts. The method was successfully applied to cell culture systems of different origin as well as different murine tissues and organs. The herein described LC-MS/MS method provides a simple tool for a fast and simultaneous analysis of arginine metabolites, including polyamines and their respective metabolic cofactors. Assay performance characteristics demonstrate suitability for applications in different experimental and preclinical settings.


Asunto(s)
Poliaminas , Espermidina , Animales , Arginina , Cromatografía Liquida/métodos , Ratones , Espermidina/metabolismo , Espectrometría de Masas en Tándem/métodos , Extractos de Tejidos
11.
Biomolecules ; 12(3)2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35327616

RESUMEN

Tackling neurodegeneration and neuroinflammation is particularly challenging due to the complexity of central nervous system (CNS) disorders, as well as the limited drug accessibility to the brain. The activation of tropomyosin-related kinase A (TRKA) receptor signaling by the nerve growth factor (NGF) or the neurosteroid dehydroepiandrosterone (DHEA) may combat neurodegeneration and regulate microglial function. In the present study, we synthesized a C-17-spiro-cyclopropyl DHEA derivative (ENT-A010), which was capable of activating TRKA. ENT-A010 protected PC12 cells against serum starvation-induced cell death, dorsal root ganglia (DRG) neurons against NGF deprivation-induced apoptosis and hippocampal neurons against Aß-induced apoptosis. In addition, ENT-A010 pretreatment partially restored homeostatic features of microglia in the hippocampus of lipopolysaccharide (LPS)-treated mice, enhanced Aß phagocytosis, and increased Ngf expression in microglia in vitro. In conclusion, the small molecule ENT-A010 elicited neuroprotective effects and modulated microglial function, thereby emerging as an interesting compound, which merits further study in the treatment of CNS disorders.


Asunto(s)
Factor de Crecimiento Nervioso , Fármacos Neuroprotectores , Animales , Deshidroepiandrosterona/farmacología , Ratones , Microglía/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Transducción de Señal , Esteroides/farmacología
12.
J Innate Immun ; 14(1): 4-30, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33849008

RESUMEN

Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedades Metabólicas , Tejido Adiposo , Humanos , Inmunidad Innata , Inflamación , Células Asesinas Naturales
13.
Cells ; 10(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201844

RESUMEN

Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.


Asunto(s)
Sistema Endocrino/metabolismo , Microglía/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Animales , Humanos , Inflamación/patología , Modelos Biológicos , Obesidad/patología , Factores de Riesgo
14.
Immunity ; 54(3): 468-483.e5, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33484643

RESUMEN

Tissue resident mast cells (MCs) rapidly initiate neutrophil infiltration upon inflammatory insult, yet the molecular mechanism is still unknown. Here, we demonstrated that MC-derived tumor necrosis factor (TNF) was crucial for neutrophil extravasation to sites of contact hypersensitivity-induced skin inflammation by promoting intraluminal crawling. MC-derived TNF directly primed circulating neutrophils via TNF receptor-1 (TNFR1) while being dispensable for endothelial cell activation. The MC-derived TNF was infused into the bloodstream by directional degranulation of perivascular MCs that were part of the vascular unit with access to the vessel lumen. Consistently, intravenous administration of MC granules boosted neutrophil extravasation. Pronounced and rapid intravascular MC degranulation was also observed upon IgE crosslinking or LPs challenge indicating a universal MC potential. Consequently, the directional MC degranulation of pro-inflammatory mediators into the bloodstream may represent an important target for therapeutic approaches aimed at dampening cytokine storm syndromes or shock symptoms, or intentionally pushing immune defense.


Asunto(s)
Vasos Sanguíneos/inmunología , Dermatitis por Contacto/inmunología , Inflamación/inmunología , Mastocitos/inmunología , Neutrófilos/inmunología , Piel/patología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Circulación Sanguínea , Degranulación de la Célula , Células Cultivadas , Enfermedades del Sistema Inmune , Trastornos Leucocíticos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Vesículas Secretoras/metabolismo , Factor de Necrosis Tumoral alfa/genética
15.
Cell Mol Life Sci ; 78(7): 3577-3590, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33464382

RESUMEN

Endogenous steroid hormones, especially glucocorticoids and mineralocorticoids, derive from the adrenal cortex, and drastic or sustained changes in their circulatory levels affect multiple organ systems. Although hypoxia signaling in steroidogenesis has been suggested, knowledge on the true impact of the HIFs (Hypoxia-Inducible Factors) in the adrenocortical cells of vertebrates is scant. By creating a unique set of transgenic mouse lines, we reveal a prominent role for HIF1α in the synthesis of virtually all steroids in vivo. Specifically, mice deficient in HIF1α in adrenocortical cells displayed enhanced levels of enzymes responsible for steroidogenesis and a cognate increase in circulatory steroid levels. These changes resulted in cytokine alterations and changes in the profile of circulatory mature hematopoietic cells. Conversely, HIF1α overexpression resulted in the opposite phenotype of insufficient steroid production due to impaired transcription of necessary enzymes. Based on these results, we propose HIF1α to be a vital regulator of steroidogenesis as its modulation in adrenocortical cells dramatically impacts hormone synthesis with systemic consequences. In addition, these mice can have potential clinical significances as they may serve as essential tools to understand the pathophysiology of hormone modulations in a number of diseases associated with metabolic syndrome, auto-immunity or even cancer.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Esteroides/biosíntesis , Animales , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
16.
Horm Metab Res ; 53(1): 9-15, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33207372

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by an infection with the novel coronavirus SARS-CoV-2, has resulted in a global pandemic and poses an emergency to public health systems worldwide. COVID-19 is highly infectious and is characterized by an acute respiratory illness that varies from mild flu-like symptoms to the life-threatening acute respiratory distress syndrome (ARDS). As such, there is an urgent need for the development of new therapeutic strategies, which combat the high mortality in severely ill COVID-19 patients. Glucocorticoids are a frontline treatment for a diverse range of inflammatory diseases. Due to their immunosuppressive functions, the use of glucocorticoids in the treatment of COVID-19 patients was initially regarded with caution. However, recent studies concluded that the initiation of systemic glucocorticoids in patients suffering from severe and critical COVID-19 is associated with lower mortality. Herein we review the anti-inflammatory effects of glucocorticoids and discuss emerging issues in their clinical use in the context of COVID-19.


Asunto(s)
Antiinflamatorios/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Glucocorticoides/uso terapéutico , Inmunosupresores/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , SARS-CoV-2 , Humanos , Síndrome de Dificultad Respiratoria/virología
17.
J Cell Biol ; 219(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33090184

RESUMEN

The signaling protein Sonic Hedgehog (SHH) is crucial for the development and function of many vertebrate tissues. It remains largely unclear, however, what defines the range and specificity of pathway activation. The adrenal gland represents a useful model to address this question, where the SHH pathway is activated in a very specific subset of cells lying near the SHH-producing cells, even though there is an abundance of lipoproteins that would allow SHH to travel and signal long-range. We determine that, whereas adrenal cells can secrete SHH on lipoproteins, this form of SHH is inactive due to the presence of cosecreted inhibitors, potentially explaining the absence of long-range signaling. Instead, we find that SHH-producing cells signal at short range via membrane-bound SHH, only to receiving cells with primary cilia. Finally, our data from NCI-H295R adrenocortical carcinoma cells suggest that adrenocortical tumors may evade these regulatory control mechanisms by acquiring the ability to activate SHH target genes in response to TGF-ß.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Cilios/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Cilios/genética , Proteínas Hedgehog/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ratones , Ratones Transgénicos
18.
Cell Metab ; 32(4): 591-604.e7, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32738205

RESUMEN

Regulatory T cells (Tregs) are vital for the maintenance of immune homeostasis, while their dysfunction constitutes a cardinal feature of autoimmunity. Under steady-state conditions, mitochondrial metabolism is critical for Treg function; however, the metabolic adaptations of Tregs during autoimmunity are ill-defined. Herein, we report that elevated mitochondrial oxidative stress and a robust DNA damage response (DDR) associated with cell death occur in Tregs in individuals with autoimmunity. In an experimental autoimmune encephalitis (EAE) mouse model of autoimmunity, we found a Treg dysfunction recapitulating the features of autoimmune Tregs with a prominent mtROS signature. Scavenging of mtROS in Tregs of EAE mice reversed the DDR and prevented Treg death, while attenuating the Th1 and Th17 autoimmune responses. These findings highlight an unrecognized role of mitochondrial oxidative stress in defining Treg fate during autoimmunity, which may facilitate the design of novel immunotherapies for diseases with disturbed immune tolerance.


Asunto(s)
Autoinmunidad/inmunología , Mitocondrias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción
19.
JCI Insight ; 5(15)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32603314

RESUMEN

Macrolide antibiotics exert antiinflammatory effects; however, little is known regarding their immunomodulatory mechanisms. In this study, using 2 distinct mouse models of mucosal inflammatory disease (LPS-induced acute lung injury and ligature-induced periodontitis), we demonstrated that the antiinflammatory action of erythromycin (ERM) is mediated through upregulation of the secreted homeostatic protein developmental endothelial locus-1 (DEL-1). Consistent with the anti-neutrophil recruitment action of endothelial cell-derived DEL-1, ERM inhibited neutrophil infiltration in the lungs and the periodontium in a DEL-1-dependent manner. Whereas ERM (but not other antibiotics, such as josamycin and penicillin) protected against lethal pulmonary inflammation and inflammatory periodontal bone loss, these protective effects of ERM were abolished in Del1-deficient mice. By interacting with the growth hormone secretagogue receptor and activating JAK2 in human lung microvascular endothelial cells, ERM induced DEL-1 transcription that was mediated by MAPK p38 and was CCAAT/enhancer binding protein-ß dependent. Moreover, ERM reversed IL-17-induced inhibition of DEL-1 transcription, in a manner that was dependent not only on JAK2 but also on PI3K/AKT signaling. Because DEL-1 levels are severely reduced in inflammatory conditions and with aging, the ability of ERM to upregulate DEL-1 may lead to a novel approach for the treatment of inflammatory and aging-related diseases.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Proteínas de Unión al Calcio/fisiología , Moléculas de Adhesión Celular/fisiología , Eritromicina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Periodontitis/tratamiento farmacológico , Neumonía/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Animales , Fármacos Gastrointestinales/farmacología , Interleucina-17/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/patología , Periodontitis/etiología , Periodontitis/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Neumonía/etiología , Neumonía/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
J Immunol ; 204(5): 1214-1224, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31980574

RESUMEN

Leukocytes are rapidly recruited to sites of inflammation via interactions with the vascular endothelium. The steroid hormone dehydroepiandrosterone (DHEA) exerts anti-inflammatory properties; however, the underlying mechanisms are poorly understood. In this study, we show that an anti-inflammatory mechanism of DHEA involves the regulation of developmental endothelial locus 1 (DEL-1) expression. DEL-1 is a secreted homeostatic factor that inhibits ß2-integrin-dependent leukocyte adhesion, and the subsequent leukocyte recruitment and its expression is downregulated upon inflammation. Similarly, DHEA inhibited leukocyte adhesion to the endothelium in venules of the inflamed mouse cremaster muscle. Importantly, in a model of lung inflammation, DHEA limited neutrophil recruitment in a DEL-1-dependent manner. Mechanistically, DHEA counteracted the inhibitory effect of inflammation on DEL-1 expression. Indeed, whereas TNF reduced DEL-1 expression and secretion in endothelial cells by diminishing C/EBPß binding to the DEL-1 gene promoter, DHEA counteracted the inhibitory effect of TNF via activation of tropomyosin receptor kinase A (TRKA) and downstream PI3K/AKT signaling that restored C/EBPß binding to the DEL-1 promoter. In conclusion, DHEA restrains neutrophil recruitment by reversing inflammation-induced downregulation of DEL-1 expression. Therefore, the anti-inflammatory DHEA/DEL-1 axis could be harnessed therapeutically in the context of inflammatory diseases.


Asunto(s)
Proteínas de Unión al Calcio/inmunología , Moléculas de Adhesión Celular/inmunología , Deshidroepiandrosterona/farmacología , Leucocitos/inmunología , Transducción de Señal/inmunología , Animales , Proteína beta Potenciadora de Unión a CCAAT/inmunología , Antígenos CD18/inmunología , Adhesión Celular/inmunología , Endotelio Vascular/inmunología , Femenino , Regulación de la Expresión Génica/inmunología , Leucocitos/citología , Ratones , Fosfatidilinositol 3-Quinasas/inmunología , Regiones Promotoras Genéticas/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , Receptor trkA/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...