Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 95(47): 17384-17391, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963228

RESUMEN

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging is used across many fields for the atomic and molecular characterization of surfaces, with both high sensitivity and high spatial resolution. When large analysis areas are required, standard ToF-SIMS instruments allow for the acquisition of adjoining tiles, which are acquired by rastering the primary ion beam. For such large area scans, tiling artifacts are a ubiquitous challenge, manifesting as intensity gradients across each tile and/or sudden changes in intensity between tiles. Such artifacts are thought to be related to a combination of sample charging, local detector sensitivity issues, and misalignment of the primary ion gun, among other instrumental factors. In this work, we investigated six different computational tiling artifact removal methods: tensor decomposition, multiplicative linear correction, linear discriminant analysis, seamless stitching, simple averaging, and simple interpolating. To ensure robustness in the study, we applied these methods to three hyperspectral ToF-SIMS data sets and one OrbiTrapSIMS data set. Our study includes a carefully designed statistical analysis and a quantitative survey that subjectively assessed the quality of the various methods employed. Our results demonstrate that while certain methods are useful and preferred more often, no one particular approach can be considered universally acceptable and that the effectiveness of the artifact removal method is strongly dependent on the particulars of the data set analyzed. As examples, the multiplicative linear correction and seamless stitching methods tended to score more highly on the subjective survey; however, for some data sets, this led to the introduction of new artifacts. In contrast, simple averaging and interpolation methods scored subjectively poorly on the biological data set, but more highly on the microarray data sets. We discuss and explore these findings in depth and present general recommendations given our findings to conclude the work.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35564426

RESUMEN

Certified disposable respirators afford important protection from hazardous aerosols but lose performance as they are worn. This study examines the effect of wear time on filtration efficiency. Disposable respirators were worn by CSIRO staff over a period of 4 weeks in early 2020. Participants wore the respirator masks for given times up to eight hours whilst working in laboratory/office environments. At that time COVID-19 precautions required staff to wear surgical (or other) masks and increase use of hand sanitizer from dispenser stations. Results obtained from a test group of ten individuals without health preconditions show an increasing number of masks failing with wear time, while the remainder continue to perform nearly unaffected for up to 8 h. Some masks were found to retain filtration performance better than others, possibly due to the type of challenge they were subjected to by the wearer. However, the rate and extent of decay are expected to differ between environments since there are many contributing factors and properties of the aerosol challenge cannot be controlled in a live trial. Penetration and variability increased during wear; the longer the wear time, the more deleterious to particle removal, particularly after approximately 2 h of wear. This behavior is captured in a descriptive statistical model based on results from a trial with this test group. The effectiveness of the masks in preventing the penetration of KCl particles was determined before and after wearing, with the analysis focusing on the most penetrating particles in a size range of 0.3-0.5 µm diameter where respirator masks are most vulnerable. The basic elements of the study, including the approach to filter testing and sample sanitization, are broadly applicable. Conclusions also have applicability to typical commercially available single-use respirator masks manufactured from melt blown polypropylene as they are reliant on the same physical principles for particle capture and electrostatic enhancement was comparable for the particle size range used for detection.


Asunto(s)
COVID-19 , Dispositivos de Protección Respiratoria , Aerosoles/análisis , COVID-19/prevención & control , Filtración , Humanos , Máscaras , Tamaño de la Partícula , Electricidad Estática
3.
Artículo en Inglés | MEDLINE | ID: mdl-35055461

RESUMEN

The potential for alcoholic vapors emitted by common sanitizing treatments to deteriorate the (electrostatic) filtration performance of disposable respirator masks has been investigated. Reports in the literature and some standard test methods provide a confusing and ambiguous picture concerning the relevance of this effect. Four different types of exposure were investigated in this study to clarify the effect of alcoholic vapor emissions on respirator masks. These included exposure to saturated vapors, use of hand sanitizers, cleaning of table surfaces and sanitization of masks by spraying them with alcohol-containing solutions. Methods employed were designed to be as real-world oriented as possible while remaining reproducible. Filtration performance and deterioration effects on exposure to the different treatments were determined on three different types of certified commercial respirator masks-a P2 and two KN95 masks. This study provides substantial evidence that disposable respirator masks with an accepted performance rating are seriously compromised from an exposure to saturated alcoholic vapors, can tolerate a one-off spray treatment with an alcoholic solution and retain their attested protection under the influence of alcoholic vapors from the use of hand sanitizer or spray sanitizer. Considering the range of vastly different outcomes obtained from the four treatments investigated, it seems prudent to assess in each case the specific effects of alcoholic solution treatments and vapors on respirator masks before use.


Asunto(s)
Exposición Profesional , Dispositivos de Protección Respiratoria , Filtración , Máscaras , Ventiladores Mecánicos
4.
Am J Obstet Gynecol ; 214(2): 260.e1-260.e8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26348376

RESUMEN

BACKGROUND: Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. OBJECTIVE: The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. STUDY DESIGN: Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh-tissue complexes, and explanted meshes were assessed using a multi-axial (ball-burst) method. RESULTS: The 4 clinical meshes varied from each other in weight, thickness, porosity, and pore size and showed significant differences in stiffness and breaking load before implantation. Following 30 days of implantation, the mechanical properties of some mesh types altered, with significant decreases in mesh stiffness and breaking load, and increased permanent extension. After 90 days these changes were more obvious, with significant decreases in stiffness and breaking load and increased permanent extension. Similar biomechanical properties of formed mesh-tissue complexes were observed for mesh types of different preimplant stiffness and structure after 90 days implantation. CONCLUSION: This is the first study to report on intrinsic changes in the mechanical properties of implanted meshes and how these changes have an impact on the estimated tissue contribution of the formed mesh-tissue complex. Decreased mesh stiffness, strength, and increased permanent extension following 90 days of implantation increase the biomechanical contribution of the attached tissue of the formed mesh-tissue complex more than previously thought. This needs to be considered when using meshes for prolapse repair.


Asunto(s)
Ensayo de Materiales , Fenómenos Mecánicos , Polipropilenos , Mallas Quirúrgicas , Animales , Procedimientos Quirúrgicos Ginecológicos/instrumentación , Prolapso de Órgano Pélvico/cirugía , Ratas , Ratas Sprague-Dawley
5.
Tissue Eng Part C Methods ; 17(2): 123-30, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20687775

RESUMEN

In this study we present a novel approach for predicting tissue growth within the pores of fibrous tissue engineering scaffolds. Thin nonwoven polyethylene terephthalate scaffolds were prepared to characterize tissue growth within scaffold pores, by mouse NR6 fibroblast cells. On the basis of measurements of tissue lengths at fiber crossovers and along fiber segments, mathematical models were determined during the proliferative phase of cell growth. Tissue growth at fiber crossovers decreased with increasing interfiber angle, with exponential relationships determined on day 6 and 10 of culture. Analysis of tissue growth along fiber segments determined two growth profiles, one with enhanced growth as a result of increased tissue lengths near the fiber crossover, achieved in the latter stage of culture. Derived mathematical models were used in the development of a software program to visualize predicted tissue growth within a pore. This study identifies key pore parameters that contribute toward tissue growth, and suggests models for predicting this growth, based on fibroblast cells. Such models may be used in aiding scaffold design, for optimum pore infiltration during the tissue engineering process.


Asunto(s)
Modelos Biológicos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Proliferación Celular , Supervivencia Celular , Fibroblastos/citología , Fibroblastos/ultraestructura , Ratones , Porosidad , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA