Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(1): 142-161, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37580864

RESUMEN

BACKGROUND AND PURPOSE: Calcitonin gene-related peptide (CGRP) is involved in migraine pathophysiology. CGRP can signal through two receptors. The canonical CGRP receptor comprises the calcitonin receptor-like receptor and receptor activity-modifying protein 1 (RAMP1); the AMY1 receptor comprises the calcitonin receptor with RAMP1. Drugs that reduce CGRP activity, such as receptor antagonists, are approved for the treatment and prevention of migraine. Despite being designed to target the canonical CGRP receptor, emerging evidence suggests that these antagonists, including erenumab (a monoclonal antibody antagonist) can also antagonise the AMY1 receptor. However, it is difficult to estimate its selectivity because direct comparisons between receptors under matched conditions have not been made. We therefore characterised erenumab at both CGRP-responsive receptors with multiple ligands, including αCGRP and ßCGRP. EXPERIMENTAL APPROACH: Erenumab antagonism was quantified through IC50 and pKB experiments, measuring cAMP production. We used SK-N-MC cells which endogenously express the human CGRP receptor, and HEK293S and Cos7 cells transiently transfected to express either human CGRP or AMY1 receptors. KEY RESULTS: Erenumab antagonised both the CGRP and AMY1 receptors with an ~20-120-fold preference for the CGRP receptor, depending on the cells, agonist, analytical approach and/or assay format. Erenumab antagonised both forms of CGRP equally, and appeared to act as a competitive reversible antagonist at both receptors. CONCLUSION AND IMPLICATIONS: Despite being designed to target the CGRP receptor, erenumab can antagonise the AMY1 receptor. Its ability to antagonise CGRP activity at both receptors may be useful in better understanding the clinical profile of erenumab.


Asunto(s)
Trastornos Migrañosos , Receptores de Péptido Relacionado con el Gen de Calcitonina , Humanos , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Receptores de Calcitonina
2.
ACS Pharmacol Transl Sci ; 6(1): 52-64, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36654758

RESUMEN

The related peptides pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) have diverse biological functions in peripheral tissues and the central nervous system. Therefore, these peptides and their three receptors represent potential drug targets for several conditions, including neurological and pain-related disorders. However, very little is known about how these peptides regulate their receptors through processes such as internalization. Therefore, we developed tools to study receptor regulation through the synthesis of fluorescently labeled analogues of PACAP-38, PACAP-27, and VIP using copper-mediated 1,3-dipolar cycloaddition of the Cy5 fluorophore. The functionality of Cy5-labeled peptides at their receptors was confirmed in cAMP accumulation assays. Internalization of the Cy5-labeled peptides was then examined and quantified at two distinct PAC1 receptor splice variants, VPAC1 and VPAC2 receptors in transfected cells. All labeled peptides were functional, exhibiting comparable cAMP pharmacology to their unlabeled counterparts and underwent internalization in a time-dependent manner. Temporal differences in the internalization profiles were observed between Cy5-labeled peptides at the PAC1n, PAC1s, VPAC1, and VPAC2 receptors. Interestingly, the pattern of Cy5-labeled peptide activity differed for cAMP accumulation and internalization, indicating that these peptides differentially stimulate cAMP accumulation and internalization and therefore display biased agonism. This novel insight into PACAP-responsive receptor signaling and internalization may provide a unique avenue for future therapeutic development. The fluorescently labeled PACAP and VIP peptides described herein, which we validated as tools to study receptor internalization, will have utility across a broad range of applications and provide greater insight into this receptor family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...