Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxid Redox Signal ; 39(16-18): 1167-1184, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503611

RESUMEN

Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico , Humanos , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , NAD/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Axones/metabolismo , Enfermedades Neurodegenerativas/metabolismo
2.
J Neurotrauma ; 40(15-16): 1743-1761, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36680758

RESUMEN

Traumatic axonal injury (TAI), thought to be caused by rotational acceleration of the head, is a prevalent neuropathology in traumatic brain injury (TBI). TAI in the optic nerve is a common finding in multiple blunt-force TBI models and hence a great model to study mechanisms and treatments for TAI, especially in view of the compartmentalized anatomy of the visual system. We have previously shown that the somata and the proximal, but not distal, axons of retinal ganglion cells (RGC) respond to DLK/LZK blockade after impact acceleration of the head (IA-TBI). Here, we explored the role of the sterile alpha and TIR-motif containing 1 (SARM1), the key driver of Wallerian degeneration (WD), in the progressive breakdown of distal and proximal segments of the optic nerve following IA-TBI with high-resolution morphological and classical neuropathological approaches. Wild type and Sarm1 knockout (KO) mice received IA-TBI or sham injury and were allowed to survive for 3, 7, 14, and 21 days. Ultrastructural and microscopic analyses revealed that TAI in the optic nerve is characterized by variable involvement of individual axons, ranging from apparent early disconnection of a subpopulation of axons to a range of ongoing axonal and myelin perturbations. Traumatic axonal injury resulted in the degeneration of a population of axons distal and proximal to the injury, along with retrograde death of a subpopulation of RGCs. Quantitative analyses on proximal and distal axons and RGC somata revealed that different neuronal domains exhibit differential vulnerability, with distal axon segments showing more severe degeneration compared with proximal segments and RGC somata. Importantly, we found that Sarm1 KO had a profound effect in the distal optic nerve by suppressing axonal degeneration by up to 50% in the first 2 weeks after IA-TBI, with a continued but lower effect at 3 weeks, while also suppressing microglial activation. Sarm1 KO had no evident effect on the initial traumatic disconnection and did not ameliorate the proximal optic axonopathy or the subsequent attrition of RGCs, indicating that the fate of different axonal segments in the course of TAI may depend on distinct molecular programs within axons.


Asunto(s)
Axones , Lesiones Traumáticas del Encéfalo , Ratones , Animales , Axones/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Lesiones Traumáticas del Encéfalo/patología , Nervio Óptico/patología , Ratones Noqueados , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
3.
Exp Neurol ; 359: 114252, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244414

RESUMEN

Traumatic axonal injury (TAI) and the associated axonopathy are common consequences of traumatic brain injury (TBI) and contribute to significant neurological morbidity. It has been previously suggested that TAI activates a highly conserved program of axonal self-destruction known as Wallerian degeneration (WD). In the present study, we utilize our well-established impact acceleration model of TBI (IA-TBI) to characterize the pathology of injured myelinated axons in the white matter tracks traversing the ventral, lateral, and dorsal spinal columns in the mouse and assess the effect of Sterile Alpha and TIR Motif Containing 1 (Sarm1) gene knockout on acute and subacute axonal degeneration and myelin pathology. In silver-stained preparations, we found that IA-TBI results in white matter pathology as well as terminal field degeneration across the rostrocaudal axis of the spinal cord. At the ultrastructural level, we found that traumatic axonopathy is associated with diverse types of axonal and myelin pathology, ranging from focal axoskeletal perturbations and focal disruption of the myelin sheath to axonal fragmentation. Several morphological features such as neurofilament compaction, accumulation of organelles and inclusions, axoskeletal flocculation, myelin degeneration and formation of ovoids are similar to profiles encountered in classical examples of WD. Other profiles such as excess myelin figures and inner tongue evaginations are more typical of chronic neuropathies. Stereological analysis of pathological axonal and myelin profiles in the ventral, lateral, and dorsal columns of the lower cervical cord (C6) segments from wild type and Sarm1 KO mice at 3 and 7 days post IA-TBI (n = 32) revealed an up to 90% reduction in the density of pathological profiles in Sarm1 KO mice after IA-TBI. Protection was evident across all white matter tracts assessed, but showed some variability. Finally, Sarm1 deletion ameliorated the activation of microglia associated with TAI. Our findings demonstrate the presence of severe traumatic axonopathy in multiple ascending and descending long tracts after IA-TBI with features consistent with some chronic axonopathies and models of WD and the across-tract protective effect of Sarm1 deletion.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Degeneración Walleriana , Animales , Ratones , Degeneración Walleriana/etiología , Axones/patología , Vaina de Mielina/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Aceleración , Proteínas del Citoesqueleto/genética , Proteínas del Dominio Armadillo/genética
4.
Neurobiol Dis ; 171: 105808, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779777

RESUMEN

Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD+ synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD+ degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD+ metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD+ levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD+ loss and suppressing SARM1 activity. Finally, the axonal NAD+/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD+ metabolism and inhibition of SARM1.


Asunto(s)
Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida-Nucleótido Adenililtransferasa , Degeneración Walleriana , Animales , Proteínas del Dominio Armadillo/metabolismo , Axones/patología , Proteínas del Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , NAD/metabolismo , Degeneración Nerviosa/patología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Inhibidores de Proteínas Quinasas , Degeneración Walleriana/metabolismo
5.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806394

RESUMEN

White matter pathology is common across a wide spectrum of neurological diseases. Characterizing this pathology is important for both a mechanistic understanding of neurological diseases as well as for the development of neuroimaging biomarkers. Although axonal calibers can vary by orders of magnitude, they are tightly regulated and related to neuronal function, and changes in axon calibers have been reported in several diseases and their models. In this study, we utilize the impact acceleration model of traumatic brain injury (IA-TBI) to assess early and late changes in the axon diameter distribution (ADD) of the mouse corticospinal tract using Airyscan and electron microscopy. We find that axon calibers follow a lognormal distribution whose parameters significantly change after injury. While IA-TBI leads to 30% loss of corticospinal axons by day 7 with a bias for larger axons, at 21 days after injury we find a significant redistribution of axon frequencies that is driven by a reduction in large-caliber axons in the absence of detectable degeneration. We postulate that changes in ADD features may reflect a functional adaptation of injured neural systems. Moreover, we find that ADD features offer an accurate way to discriminate between injured and non-injured mice. Exploring injury-related ADD signatures by histology or new emerging neuroimaging modalities may offer a more nuanced and comprehensive way to characterize white matter pathology and may also have the potential to generate novel biomarkers of injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sustancia Blanca , Animales , Axones/patología , Lesiones Traumáticas del Encéfalo/patología , Ratones , Ratones Endogámicos , Tractos Piramidales/patología , Sustancia Blanca/patología
6.
Mol Neurodegener ; 14(1): 44, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775817

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a major cause of CNS neurodegeneration and has no disease-altering therapies. It is commonly associated with a specific type of biomechanical disruption of the axon called traumatic axonal injury (TAI), which often leads to axonal and sometimes perikaryal degeneration of CNS neurons. We have previously used genome-scale, arrayed RNA interference-based screens in primary mouse retinal ganglion cells (RGCs) to identify a pair of related kinases, dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) that are key mediators of cell death in response to simple axotomy. Moreover, we showed that DLK and LZK are the major upstream triggers for JUN N-terminal kinase (JNK) signaling following total axonal transection. However, the degree to which DLK/LZK are involved in TAI/TBI is unknown. METHODS: Here we used the impact acceleration (IA) model of diffuse TBI, which produces TAI in the visual system, and complementary genetic and pharmacologic approaches to disrupt DLK and LZK, and explored whether DLK and LZK play a role in RGC perikaryal and axonal degeneration in response to TAI. RESULTS: Our findings show that the IA model activates DLK/JNK/JUN signaling but, in contrast to axotomy, many RGCs are able to recover from the injury and terminate the activation of the pathway. Moreover, while DLK disruption is sufficient to suppress JUN phosphorylation, combined DLK and LZK inhibition is required to prevent RGC cell death. Finally, we show that the FDA-approved protein kinase inhibitor, sunitinib, which has activity against DLK and LZK, is able to produce similar increases in RGC survival. CONCLUSION: The mitogen-activated kinase kinase kinases (MAP3Ks), DLK and LZK, participate in cell death signaling of CNS neurons in response to TBI. Moreover, sustained pharmacologic inhibition of DLK is neuroprotective, an effect creating an opportunity to potentially translate these findings to patients with TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Supervivencia Celular/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Leucina Zippers/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Células Ganglionares de la Retina/metabolismo
7.
PLoS One ; 14(11): e0224846, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31710637

RESUMEN

Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60-70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100-170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Células-Madre Neurales/citología , Neuronas/citología , Optogenética , Animales , Astrocitos/citología , Astrocitos/efectos de la radiación , Axones/metabolismo , Axones/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Linaje de la Célula/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Channelrhodopsins/metabolismo , Células Madre Embrionarias Humanas/efectos de la radiación , Humanos , Lentivirus/metabolismo , Luz , Ratones Desnudos , Corteza Motora/metabolismo , Células-Madre Neurales/efectos de la radiación , Plasticidad Neuronal/efectos de la radiación , Neuronas/efectos de la radiación , Neurotransmisores/metabolismo , Fenotipo , Estimulación Luminosa , Ratas Desnudas , Transmisión Sináptica/efectos de la radiación
8.
Curr Opin Neurol ; 32(6): 786-795, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31633494

RESUMEN

PURPOSE OF REVIEW: Diffuse or traumatic axonal injury is one of the principal pathologies encountered in traumatic brain injury (TBI) and the resulting axonal loss, disconnection, and brain atrophy contribute significantly to clinical morbidity and disability. The seminal discovery of the slow Wallerian degeneration mice (Wld) in which transected axons do not degenerate but survive and function independently for weeks has transformed concepts on axonal biology and raised hopes that axonopathies may be amenable to specific therapeutic interventions. Here we review mechanisms of axonal degeneration and also describe how these mechanisms may inform biological therapies of traumatic axonopathy in the context of TBI. RECENT FINDINGS: In the last decade, SARM1 [sterile a and Toll/interleukin-1 receptor (TIR) motif containing 1] and the DLK (dual leucine zipper bearing kinase) and LZK (leucine zipper kinase) MAPK (mitogen-activated protein kinases) cascade have been established as the key drivers of Wallerian degeneration, a complex program of axonal self-destruction which is activated by a wide range of injurious insults, including insults that may otherwise leave axons structurally robust and potentially salvageable. Detailed studies on animal models and postmortem human brains indicate that this type of partial disruption is the main initial pathology in traumatic axonopathy. At the same time, the molecular dissection of Wallerian degeneration has revealed that the decision that commits axons to degeneration is temporally separated from the time of injury, a window that allows potentially effective pharmacological interventions. SUMMARY: Molecular signals initiating and triggering Wallerian degeneration appear to be playing an important role in traumatic axonopathy and recent advances in understanding their nature and significance is opening up new therapeutic opportunities for TBI.


Asunto(s)
Axones , Traumatismos Difusos del Encéfalo , Lesiones Traumáticas del Encéfalo , Degeneración Walleriana , Animales , Axones/metabolismo , Axones/patología , Traumatismos Difusos del Encéfalo/metabolismo , Traumatismos Difusos del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Humanos , Degeneración Walleriana/tratamiento farmacológico , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...