Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(13): 4618-4630, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38550700

RESUMEN

This article defines the role that continuous flow chemistry can have in new reaction discovery, thereby creating molecular assembly opportunities beyond our current capabilities. Most notably the focus is based upon photochemical, electrochemical and temperature sensitive processes where continuous flow methods and machine assisted processing can have significant impact on chemical reactivity patterns. These flow chemical platforms are ideally placed to exploit future innovation in data acquisition, feed-back and control through artificial intelligence (AI) and machine learning (ML) techniques.

2.
J Med Chem ; 67(4): 3004-3017, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38301029

RESUMEN

NOD1 and NOD2 are members of the pattern recognition receptors involved in the innate immune response. Overactivation of NOD1 is implicated in inflammatory disorders, multiple sclerosis, and cancer cell metastases. NOD1 antagonists would represent valuable pharmacological tools to gain further insight into protein roles, potentially leading to new therapeutic strategies. We herein report the expansion of the chemical space of NOD1 antagonists via a multicomponent synthetic approach affording a novel chemotype, namely, 2,3-diaminoindoles. These efforts resulted in compound 37, endowed with low micromolar affinity toward NOD1. Importantly, a proof-of-evidence of direct binding to NOD1 of Noditinib-1 and derivative 37 is provided here for the first time. Additionally, the combination of computational studies and NMR-based displacement assays enabled the characterization of the binding modality of 37 to NOD1, thus providing key unprecedented knowledge for the design of potent and selective NOD1 antagonists.


Asunto(s)
Inmunidad Innata , Proteína Adaptadora de Señalización NOD1 , Proteína Adaptadora de Señalización NOD2/metabolismo , Indoles/química , Indoles/metabolismo
3.
Org Lett ; 26(14): 2847-2851, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38133578

RESUMEN

Herein we disclose a telescoped flow strategy to access electronically differentiated bisaryl ketones as potentially new and tunable photosensitizers containing both electron-rich benzene systems and electron-deficient pyridyl moieties. Our approach merges a light-driven (365 nm) and catalyst-free reductive arylation between aromatic aldehydes and cyanopyridines with a subsequent oxidation process. The addition of electron-donating and withdrawing substituents on the scaffold allowed effective modification of the absorbance of these compounds in the UV-vis region, while the continuous flow process affords high yields, short residence time, and high throughput.

4.
ACS Med Chem Lett ; 14(5): 672-680, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37197467

RESUMEN

In recent years, photochemistry has increasingly emerged as an enabling methodology in both academia and the pharmaceutical industry. Long photolysis times and the gradual reduction of light penetration remained for many years unsolved issues for photochemical rearrangements, triggering the generation of highly reactive species in an uncontrolled fashion and causing the formation of multiple side products. The emergence of continuous-flow chemistry significantly helped to overcome these issues, thus prompting the implementation of photo-flow-based approaches for the generation of pharmaceutically relevant substructures. This Technology Note highlights the benefits of flow chemistry for photochemical rearrangements, including Wolff, Favorskii, Beckmann, Fries, and Claisen rearrangements. We showcase recent advances for photo-rearrangements in continuous flow applied to the synthesis of privileged scaffolds and active pharmaceutical ingredients.

5.
Front Chem ; 11: 1126427, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998572

RESUMEN

The [1,2,3]-triazolo [1,5-a] quinoxalin-4(5H)-one scaffold and its analogues triazole-fused heterocyclic compounds are relevant structural templates in both natural and synthetic biologically active compounds. However, their medicinal chemistry applications are often limited due to the lack of synthetic protocols combining straightforward generation of the central core while also allowing extensive decoration activity for drug discovery purposes. Herein, we report a "refreshed" synthesis of the [1,2,3]-triazolo [1,5-a]quinoxalin-4(5H)-one core, encompassing the use of eco-compatible catalysts and reaction conditions. We have also performed a sustainable and extensive derivatization campaign at both the endocyclic amide nitrogen and the ester functionality, comprehensively exploring the reaction scope and overcoming some of the previously reported difficulties in introducing functional groups on this structural template. Finally, we unveiled a preliminary biological investigation for the newly generated chemical entities. Our assessment of the compounds on different bacterial species (two S. aureus strains, three P. aeruginosa strains, K. pneumonia), and two fungal C. albicans strains, as well as the evaluation of their activity on S. epidermidis biofilm formation, foster further optimization for the retrieved hit compounds 9, 14, and 20.

6.
ACS Med Chem Lett ; 14(3): 326-337, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36923914

RESUMEN

The efficacy, safety, and scale-up of several chemical rearrangements remain unsolved problems due to the associated handling of hazardous, toxic, and pollutant chemicals and high-risk intermediates. For many years batch processes have been considered the only possibility to drive these reactions, but continuous-flow technology has emerged, for both academic laboratories and pharmaceutical companies, as a powerful tool for easy, controlled, and safer chemistry protocols, helping to minimize the formation of side products and increase reaction yields. This Technology Note summarizes recently reported chemical rearrangements using continuous-flow approaches, with a focus on Curtius, Hofmann, and Schmidt reactions. Flow protocols, general advantages and safety aspects, and reaction scope for the generation of both privileged scaffolds and active pharmaceutical ingredients will be showcased.

7.
ChemSusChem ; 15(6): e202200301, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35244343

RESUMEN

Invited for this month's cover are Antonella Ilenia Alfano and Margherita Brindisi (University of Naples Federico II) and Heiko Lange (University of Milano Bicocca). The cover image highlights the impact of greener and more sustainable flow chemistry protocols applied to amide bond formation. The Review itself is available at 10.1002/cssc.202102708.


Asunto(s)
Amidas
8.
J Med Chem ; 65(4): 3080-3097, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35148101

RESUMEN

Compelling new support has been provided for histone deacetylase isoform 6 (HDAC6) as a common thread in the generation of the dysregulated proinflammatory and fibrotic phenotype in cystic fibrosis (CF). HDAC6 also plays a crucial role in bacterial clearance or killing as a direct consequence of its effects on CF immune responses. Inhibiting HDAC6 functions thus eventually represents an innovative and effective strategy to tackle multiple aspects of CF-associated lung disease. In this Perspective, we not only showcase the latest evidence linking HDAC(6) activity and expression with CF phenotype but also track the new dawn of HDAC(6) modulators in CF and explore potentialities and future perspectives in the field.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/fisiopatología , Histona Desacetilasa 6/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Humanos
9.
ChemSusChem ; 15(6): e202102708, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35015338

RESUMEN

Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.


Asunto(s)
Amidas , Técnicas de Síntesis en Fase Sólida , Amidas/química , Aminoácidos/química , Técnicas de Química Sintética/métodos , Péptidos/química , Técnicas de Síntesis en Fase Sólida/métodos
10.
ChemMedChem ; 16(24): 3795-3809, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34585536

RESUMEN

The generation of peptidomimetic substructures for medicinal chemistry purposes requires effective and divergent synthetic methods. We present in this work an efficient flow process that allows quick modulation of reagents for Joullié-Ugi multicomponent reaction, using spiroindolenines as core motifs. This sterically hindered imine equivalent could successfully be diversified using various isocyanides and amino acids in generally good space-time yields. A telescoped flow process combining interrupted Fischer reaction for spiroindolenine synthesis and subsequent Joullié-Ugi-type modification resulted in product formation in very good overall yield in less than 2 hours compared to 48 hours required in batch mode. The developed protocol can be seen as a general tool for rapid and facile generation of peptidomimetic compounds. We also showcase preliminary biological assessments for the prepared compounds.


Asunto(s)
Antibacterianos/farmacología , Peptidomiméticos/farmacología , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Estereoisomerismo
11.
J Org Chem ; 85(4): 1981-1990, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31880934

RESUMEN

A visible-light-promoted three-component isocyanide-based synthesis of iminofurans is herein reported. The reaction proved to be general in scope and proceeds through a triple domino process. Control experiments with 18O-labeled water and TEMPO provided key mechanistic insights for delineating the reactivity paradigms crucial to design efficient photoredox isocyanide-based domino transformations.

12.
J Org Chem ; 84(24): 16299-16307, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31779310

RESUMEN

Considering aryl azides as electrophilic partners for the TosMIC mediated Van Leusen reaction, a novel multicomponent synthesis of 4-tosyl-1-arylimidazoles is reported. In this transformation, two molecules of TosMIC participate in the reaction mechanism in two different ways, with the second molecule undergoing a novel type of fragmentation resulting in the incorporation of a C-H into the final product.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...