Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxics ; 12(8)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39195700

RESUMEN

Repeated exposure to tobacco smoke causes neuroinflammation and neuroplasticity, which correlates with smoking withdrawal-induced anxiety. The purpose of this study was to investigate the anticipated involvement of antioxidant-rich nanoparticles (NPs) prepared by oxidation-triggered polymerization of green tea catechins in impacting these effects in a rat model of tobacco smoke exposure. Exposure to tobacco smoke was carried out for 2 h a day, 5 days a week, for a total of 36 days. Weekly behavioral tests were conducted prior to recommencing the exposure. Following a 20-day exposure period, rats were administered either distilled water or green tea (GT) NPs (20 mg/kg, orally) for an additional 16 days. Our findings revealed that tobacco smoke exposure induced anxiety-like behavior indicative of withdrawal, and this effect was alleviated by GT NPs. Tobacco smoke exposure caused a marked increase in the relative mRNA and protein expression of nuclear factor-kappa B (NF-κB) and reduced the relative mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus (HIP) and hypothalamus (HYP) brain subregions. The intervention of GT NPs effectively inhibited these effects. Our findings demonstrate the potent protective role of GT NPs in reducing withdrawal-induced anxiety-like behavior, neuroinflammation, and neuroplasticity triggered by tobacco smoke exposure.

2.
Drug Deliv Transl Res ; 13(7): 1967-1982, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37069327

RESUMEN

Antioxidant-rich plant extracts have demonstrated tremendous value as inflammatory modulators and as nanomaterial precursors. Chronic cigarette smoking alters neurotransmitter systems, particularly the glutamatergic system, and produces neuroinflammation. This study aimed to investigate the behavioral and molecular correlates of cigarette smoking withdrawal-induced anxiety-like behavior in rats, and whether these effects could be mitigated by the administration of antioxidant nanoassemblies prepared by spontaneous oxidation of dark-roasted Arabica coffee bean aqueous extracts. Four experimental groups of female Sprague-Dawley rats were randomly assigned to: (i) a control group that was only exposed to room air, (ii) a COF group that was administered 20 mg/kg of the coffee nanoassemblies by oral gavage, (iii) a SMOK group that was exposed to cigarette smoke and was given an oral gavage of distilled water, (iv) and a SMOK + COF group that was exposed to cigarette smoke and administered 20 mg/kg of the coffee nanoassemblies. Animals were exposed to cigarette smoke for 2 h per day, five days per week, with a 2-day withdrawal period each week. At the end of the 4th week, rats began receiving either distilled water or the coffee nanoassemblies before being exposed to cigarette smoke for 21 additional days. Weekly behavioral tests revealed that cigarette smoking withdrawal exacerbated anxiety, while the administration of the coffee nanoassemblies reduced this effect. The effect of cigarette smoking on astroglial glutamate transporters and nuclear factor kappa B (NF-κB) expression in brain subregions was also measured. Smoking reduced the relative mRNA and protein levels of the glutamate transporter 1 (GLT-1) and the cystine/glutamate antiporter (xCT), and increased the levels of NF-κB, but these effects were attenuated by the coffee nanoassemblies. Thus, administration of the antioxidant nanoassemblies decreased the negative effects of cigarette smoke, which included neuroinflammation, changes in glutamate transporters' expression, and a rise in anxiety-like behavior.


Asunto(s)
Antioxidantes , Coffea , Ratas , Animales , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias , FN-kappa B , Fumar , Ansiedad/inducido químicamente , Agua , Glutamatos
3.
Brain Res Bull ; 185: 56-63, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35490908

RESUMEN

Chronic tobacco exposure can alter the endocannabinoid (eCB) system, consequently leading to an anxiety state. In this study, we investigated the effects of waterpipe tobacco smoke (WTS) on cannabinoid receptor 1 and 2 (CBR1 and CBR2) gene and protein expression in mesocorticolimbic brain regions. Using elevated plus maze (EPM) and open field (OF) tests, the effects of WTS exposure on withdrawal-induced anxiety-like behavior were examined. The effect of ceftriaxone (CEF), a ß-lactam known to upregulate glutamate transporter 1 (GLT-1), on anxiety and the expression of cannabinoid receptors was also determined. Male Sprague-Dawley rats were randomly assigned to four groups: 1) the Control group was exposed only to standard room air; 2) the WTS group was exposed to tobacco smoke and treated with saline vehicle; 3) the WTS-CEF group was exposed to WTS and treated with ceftriaxone; and 4) the CEF group was exposed only to standard room air and treated with ceftriaxone. Rats were exposed to WTS (or room air) for two hours per day, five days per week for a period of four weeks. Behavioral tests (EPM and OF) were conducted weekly during acute withdrawal, 24 h following WTS exposure. Rats were given either saline or ceftriaxone (200 mg/kg i.p.) for five days during Week 4, 30 min prior to WTS exposure. Withdrawal-induced anxiety was induced by WTS exposure but was reduced by ceftriaxone treatment. WTS exposure decreased CBR1 mRNA and protein expression in the NAc and VTA, but not PFC, and ceftriaxone treatment attenuated these effects. WTS exposure did not change CBR2 mRNA expression in the NAc, VTA, or PFC. These findings demonstrate that WTS exposure dysregulated the endocannabinoid system and increased anxiety-like behavior, and these effects were reversed by ceftriaxone treatment, which suggest the involvement of glutamate transporter 1 in these effects.


Asunto(s)
Ceftriaxona , Tabaco para Pipas de Agua , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Encéfalo/metabolismo , Ceftriaxona/farmacología , Endocannabinoides , Transportador 2 de Aminoácidos Excitadores/metabolismo , Masculino , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Humo/efectos adversos , Nicotiana/metabolismo
4.
Front Pharmacol ; 13: 1047236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699078

RESUMEN

Background: Chronic exposure to cigarette smoke produces neuroinflammation and long-term changes in neurotransmitter systems, especially glutamatergic systems. Objective: We examined the effects of cigarette smoke on astroglial glutamate transporters as well as NF-κB expression in mesocorticolimbic brain regions, prefrontal cortex (PFC) and nucleus accumbens (NAc). The behavioral consequences of cigarette smoke exposure were assessed using open field (OF) and light/dark (LD) tests to assess withdrawal-induced anxiety-like behavior. Methods: Sprague-Dawley rats were randomly assigned to five experimental groups: a control group exposed only to standard room air, a cigarette smoke exposed group treated with saline vehicle, two cigarette smoke exposed groups treated with acetylsalicylic acid (ASA) (15 mg/kg and 30 mg/kg, respectively), and a group treated only with ASA (30 mg/kg). Cigarette smoke exposure was performed for 2 h/day, 5 days/week, for 31 days. Behavioral tests were conducted weekly, 24 h after cigarette smoke exposure, during acute withdrawal. At the end of week 4, rats were given either saline or ASA 45 min before cigarette exposure for 11 days. Results: Cigarette smoke increased withdrawal-induced anxiety, and 30 mg/kg ASA attenuated this effect. Cigarette smoke exposure increased the relative mRNA and protein expression of nuclear factor ĸB (NFĸB) in PFC and NAc, and ASA treatment reversed this effect. Also, cigarette smoke decreased the relative mRNA and protein expression of glutamate transporter1 (GLT-1) and the cystine-glutamate transporter (xCT) in the PFC and the NAc, while ASA treatment normalized their expression. Conclusion: Cigarette smoke caused neuroinflammation, alterations in glutamate transporter expression, and increased anxiety-like behavior, and these effects were attenuated by acetylsalicylic acid treatment.

5.
Behav Brain Res ; 414: 113475, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34280460

RESUMEN

Oxandrolone (OXA) is an androgen and anabolic steroid (AAS) that is used to reverse weight loss associated with some medical conditions. One of the side effects of OXA is its potential to induce depressive symptoms. Growing evidence suggested that neuroinflammation and cytokines play crucial roles in sickness behavioral and associated mood disturbances. Previous studies showed that metformin attenuated neuroinflammation. This study investigated the potential protective role of metformin against OXA-induced depression-like behavior and neuroinflammation. Twenty- four Wistar male rats were randomly grouped into four groups: the control group (Control) received only vehicle; the oxandrolone group (OXA) received oxandrolone (0.28 mg/kg, i.p); the metformin group (MET) received metformin (100 mg/kg, i.p); and the oxandrolone / metformin group (OXA + MET) received both oxandrolone (0.28 mg/kg, i.p) and metformin (100 mg/kg, i.p). These treatments were administered for fourteen consecutive days. Behavioral tests to measure depression-like behavior were conducted before and after treatments. qRT-PCR was used to measure the relative expression of proinflammatory and anti-inflammatory cytokines in the hippocampus and hypothalamus. The results showed that oxandrolone induced depression-like behavior and dysregulated pro-/anti-inflammatory cytokines, while metformin attenuated these effects. These findings suggest that metformin is a potential treatment to reverse the depressive effects induced by oxandrolone that involve neuroinflammatory effects.


Asunto(s)
Anabolizantes/efectos adversos , Antiinflamatorios/farmacología , Citocinas/efectos de los fármacos , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Metformina/farmacología , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Oxandrolona/efectos adversos , Anabolizantes/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Conducta Animal/efectos de los fármacos , Depresión/inmunología , Depresión/metabolismo , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/inmunología , Hipotálamo/metabolismo , Interleucina-10 , Interleucina-1beta/efectos de los fármacos , Interleucina-6 , Masculino , Metformina/administración & dosificación , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Oxandrolona/administración & dosificación , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/efectos de los fármacos
6.
Pharmaceutics ; 12(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867015

RESUMEN

Thymoquinone (TQ) is a water-insoluble natural compound isolated from Nigella sativa that has demonstrated promising chemotherapeutic activity. The purpose of this study was to develop a polymeric nanoscale formulation for TQ to circumvent its delivery challenges. TQ-encapsulated nanoparticles (NPs) were fabricated using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) copolymers by the nanoprecipitation technique. Formulation variables included PCL chain length and NP architecture (matrix-type nanospheres or reservoir-type nanocapsules). The formulations were characterized in terms of their particle size, polydispersity index (PDI), drug loading efficiency, and drug release. An optimized TQ NP formulation in the form of oil-filled nanocapsules (F2-NC) was obtained with a mean hydrodynamic diameter of 117 nm, PDI of 0.16, about 60% loading efficiency, and sustained in vitro drug release. The formulation was then tested in cultured human cancer cell lines to verify its antiproliferative efficacy as a potential anticancer nanomedicine. A pilot pharmacokinetic study was also carried out in healthy mice to evaluate the oral bioavailability of the optimized formulation, which revealed a significant increase in the maximum plasma concentration (Cmax) and a 1.3-fold increase in bioavailability compared to free TQ. Our findings demonstrate that the versatility of polymeric NPs can be effectively applied to design a nanoscale delivery platform for TQ that can overcome its biopharmaceutical limitations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA