Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(9): e10479, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664494

RESUMEN

Understanding the effect of the environment on trait variation is critical for ecologically and economically important plants. Here, we asked whether differences in soil moisture are a source of variation in Sahara mustard (Brassica tournefortii). We subjected common garden populations of plants derived from native, invasive, and landrace sources (ranges) to varying water addition treatments. Using principal component analysis, we generated composite variables of life history traits for ANCOVA tests and plotted norms of reaction. Planting time was included as a covariate because we observed differences in seedling emergence despite efforts to standardize germination. We also examined the population coefficient of variation of individual traits (plasticity) and the association of trait CVs with fitness. The amount of plasticity varied but was inconsistent among range sources for all composite traits. Planting time did not affect treatments, but plants from different ranges responded differently to variable planting times. With a surplus of water, plants derived from native and invasive populations plateaued in vegetative trait values but showed a continuous linear increase in reproductive trait values. Possibly as a result of domestication, moderate and high water treatments in landrace plants caused plateaus in composite trait values for flowering phenology, seed count, plant size, and branching. The ecological breadth shown by our plants is likely due to drought tolerance that evolved in Brassica tournefortii source populations.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37250748

RESUMEN

Cerebrovascular lesions are prevalent in late life and frequently co-occur but the relationship to cognitive impairment is complicated by the lack of consensus around which lesions represent hallmark pathologies for vascular impairment, particularly in the presence of Alzheimer's disease (AD). We developed an easily applicable model of cerebrovascular disease (CVD), defined as the presence of two or more lesions: moderate to severe cerebral amyloid angiopathy, moderate to severe arteriolosclerosis, infarcts (large, lacunar, or micro), and/or hemorrhages. AD was defined as intermediate or high AD neuropathologic change. The contribution of vascular risk factors such as atherosclerosis and/or a health history of heart disease, hyperlipidemia, stroke events, diabetes, or hypertension was also assessed. Logistic regression analysis reported the association of CVD with increasing age, vascular risk factors, AD, and cognitive impairment in this study of 1,485 autopsied individuals. Cerebrovascular lesions were present in 48% and 16% had CVD. Increasing age associated with all lesions (p<0.001), except hemorrhages (p=0.41). CVD was more likely in individuals with vascular risk factors or AD (p<0.01). CVD, but not individual cerebrovascular lesions, associated with impairment in cases without AD (p<0.01), but not in cases with AD (p>0.61). From this, we conclude that a simple, additive model of CVD is 1) age and AD-associated, 2) is associated with vascular risk factors, and 3) clinically correlates with cognitive decline independent of AD.

3.
Brain ; 144(3): 953-962, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33449993

RESUMEN

Cerebral amyloid angiopathy (CAA), limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) and Lewy bodies occur in the absence of clinical and neuropathological Alzheimer's disease, but their prevalence and severity dramatically increase in Alzheimer's disease. To investigate how plaques, tangles, age and apolipoprotein E ε4 (APOE ε4) interact with co-pathologies in Alzheimer's disease, we analysed 522 participants ≥50 years of age with and without dementia from the Center for Neurodegenerative Disease Research (CNDR) autopsy program and 1340 participants in the National Alzheimer's Coordinating Center (NACC) database. Consensus criteria were applied for Alzheimer's disease using amyloid phase and Braak stage. Co-pathology was staged for CAA (neocortical, allocortical, and subcortical), LATE-NC (amygdala, hippocampal, and cortical), and Lewy bodies (brainstem, limbic, neocortical, and amygdala predominant). APOE genotype was determined for all CNDR participants. Ordinal logistic regression was performed to quantify the effect of independent variables on the odds of having a higher stage after checking the proportional odds assumption. We found that without dementia, increasing age associated with all pathologies including CAA (odds ratio 1.63, 95% confidence interval 1.38-1.94, P < 0.01), LATE-NC (1.48, 1.16-1.88, P < 0.01), and Lewy bodies (1.45, 1.15-1.83, P < 0.01), but APOE ε4 only associated with CAA (4.80, 2.16-10.68, P < 0.01). With dementia, increasing age associated with LATE-NC (1.30, 1.15-1.46, P < 0.01), while Lewy bodies associated with younger ages (0.90, 0.81-1.00, P = 0.04), and APOE ε4 only associated with CAA (2.36, 1.52-3.65, P < 0.01). A longer disease course only associated with LATE-NC (1.06, 1.01-1.11, P = 0.01). Dementia in the NACC cohort associated with the second and third stages of CAA (2.23, 1.50-3.30, P < 0.01), LATE-NC (5.24, 3.11-8.83, P < 0.01), and Lewy bodies (2.41, 1.51-3.84, P < 0.01). Pathologically, increased Braak stage associated with CAA (5.07, 2.77-9.28, P < 0.01), LATE-NC (5.54, 2.33-13.15, P < 0.01), and Lewy bodies (4.76, 2.07-10.95, P < 0.01). Increased amyloid phase associated with CAA (2.27, 1.07-4.80, P = 0.03) and Lewy bodies (6.09, 1.66-22.33, P = 0.01). In summary, we describe widespread distributions of CAA, LATE-NC and Lewy bodies that progressively accumulate alongside plaques and tangles in Alzheimer's disease dementia. CAA interacted with plaques and tangles especially in APOE ε4 positive individuals; LATE-NC associated with tangles later in the disease course; most Lewy bodies associated with moderate to severe plaques and tangles.


Asunto(s)
Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Angiopatía Amiloide Cerebral/epidemiología , Enfermedad por Cuerpos de Lewy/epidemiología , Proteinopatías TDP-43/epidemiología , Anciano , Anciano de 80 o más Años , Comorbilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
4.
Ecol Evol ; 9(23): 13127-13141, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31871634

RESUMEN

Varying environments can result in different patterns of adaptive phenotypes. By performing a common greenhouse experiment, we identified phenotypic differentiation on phenology, leaf morphology, branch architecture, size, and reproduction, among native, invasive, and landrace ranges of Brassica tournefortii. We first compared trait means and fitness functions among ranges, then we analyzed how trait means and selection strength of populations respond to varying aridity. Most traits varied such that landrace > invasive > native. Excluding reproduction, which was positively selected, most trait PCs experienced nonlinear selection in the native range but frequently shifted to directional selection in invasive and/or landrace ranges. The absence of strong clines for trait means in landrace and invasive populations suggest that agricultural practices and novel environments in source locations affected adaptive potential. Selection strength on faster reproductive phenology (negative directional) and leaf margin trait (disruptive) PCs coincided with increasing moisture. In native populations, higher aridity was associated with more days to reproduction, but landrace and invasive populations show stable mean time to reproduction with increasing moisture. A stable adaptive trait can increase range expansion in the invasive range, but stability can be beneficial for future harvest of B. tournefortii seed crops in the face of climate change.

5.
Science ; 363(6425)2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30679341

RESUMEN

Species richness of marine mammals and birds is highest in cold, temperate seas-a conspicuous exception to the general latitudinal gradient of decreasing diversity from the tropics to the poles. We compiled a comprehensive dataset for 998 species of sharks, fish, reptiles, mammals, and birds to identify and quantify inverse latitudinal gradients in diversity, and derived a theory to explain these patterns. We found that richness, phylogenetic diversity, and abundance of marine predators diverge systematically with thermoregulatory strategy and water temperature, reflecting metabolic differences between endotherms and ectotherms that drive trophic and competitive interactions. Spatial patterns of foraging support theoretical predictions, with total prey consumption by mammals increasing by a factor of 80 from the equator to the poles after controlling for productivity.


Asunto(s)
Biodiversidad , Regulación de la Temperatura Corporal , Cadena Alimentaria , Metabolismo , Conducta Predatoria , Animales , Aves/fisiología , Peces/fisiología , Mamíferos/fisiología , Modelos Biológicos , Océanos y Mares , Filogenia , Reptiles/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...