Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(3): 527-537, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38346803

RESUMEN

Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.


Asunto(s)
Acidithiobacillus thiooxidans , Proteínas Fimbrias , Proteínas Fimbrias/genética , Acidithiobacillus thiooxidans/metabolismo , Fimbrias Bacterianas , Sulfuros/metabolismo , Minerales/metabolismo
2.
Extremophiles ; 27(3): 31, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848738

RESUMEN

There are few biophysical studies or structural characterizations of the type IV pilin system of extremophile bacteria, such as the acidophilic Acidithiobacillus thiooxidans. We set out to analyze their pili-comprising proteins, pilins, because these extracellular proteins are in constant interaction with protons of the acidic medium in which At. thiooxidans grows. We used the web server Operon Mapper to analyze and identify the cluster codified by the minor pilin of At. thiooxidans. In addition, we carried an in-silico characterization of such pilins using the VL-XT algorithm of PONDR® server. Our results showed that structural disorder prevails more in pilins of At. thiooxidans than in non-acidophilic bacteria. Further computational characterization showed that the pilins of At. thiooxidans are significantly enriched in hydroxy (serine and threonine) and amide (glutamine and asparagine) residues, and significantly reduced in charged residues (aspartic acid, glutamic acid, arginine and lysine). Similar results were obtained when comparing pilins from other Acidithiobacillus and other acidophilic bacteria from another genus versus neutrophilic bacteria, suggesting that these properties are intrinsic to pilins from acidic environments, most likely by maintaining solubility and stability in harsh conditions. These results give guidelines for the application of extracellular proteins of acidophiles in protein engineering.


Asunto(s)
Acidithiobacillus , Proteínas Fimbrias , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Acidithiobacillus thiooxidans/genética , Acidithiobacillus thiooxidans/metabolismo , Aminoácidos/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Ácidos
3.
PLoS One ; 14(1): e0199854, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30615628

RESUMEN

Acidithiobacillus thiooxidans is an acidophilic chemolithoautotrophic bacterium widely used in the mining industry due to its metabolic sulfur-oxidizing capability. The biooxidation of sulfide minerals is enhanced through the attachment of At. thiooxidans cells to the mineral surface. The Type IV pili (TfP) of At. thiooxidans may play an important role in the bacteria attachment since TfP play a key adhesive role in the attachment and colonization of different surfaces. In this work, we report for the first time the mRNA sequence of three TfP proteins from At. thiooxidans, the adhesin protein PilY1 and the TfP pilins PilW and PilV. The nucleotide sequences of these TfP proteins show changes in some nucleotide positions with respect to the corresponding annotated sequences. The bioinformatic analyses and 3D-modeling of protein structures sustain their classification as TfP proteins, as structural homologs of the corresponding proteins of Ps. aeruginosa, results that sustain the role of PilY1, PilW and PilV in pili assembly. Also, that PilY1 comprises the conserved Neisseria-PilC (superfamily) domain of the tip-associated adhesin, while PilW of the superfamily of putative TfP assembly proteins and PilV belongs to the superfamily of TfP assembly protein. In addition, the analyses suggested the presence of specific functional domains involved in adhesion, energy transduction and signaling functions. The phylogenetic analysis indicated that the PilY1 of Acidithiobacillus genus forms a cohesive group linked with iron- and/or sulfur-oxidizing microorganisms from acid mine drainage or mine tailings.


Asunto(s)
Acidithiobacillus thiooxidans/genética , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Filogenia , Análisis de Secuencia de ADN , Neisseria/genética , Dominios Proteicos , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...