RESUMEN
Cryptosporidium spp. is one of the most important pathogens infecting nursing calves worldwide. This study aimed to investigate the intestinal microbiota of dairy calves during the first month of life and the impact of diarrhea caused by Cryptosporidium on a Brazilian farm. Fecal samples from 30 calves were collected during the first month of life, and fecal scores were recorded. Samples from the second, third, and fourth days of life were analyzed by DNA sequencing of the 16S rRNA gene. In addition, samples of sixteen calves positive for Cryptosporidium spp. were retrospectively chosen according to the development of diarrhea: four and two days before diarrhea, at the onset of diarrhea, after four days of diarrhea, at the end of diarrhea, and after six days of diarrhea resolution. Diarrhea was observed in all calves (100%), starting at day 5 of life, and all calves tested positive for Cryptosporidium in at least one sample. The microbiota richness increased with age but was retarded by diarrhea. Compositional changes associated with Cryptosporidium infection included increases in Fusobacterium, Prevotella, and Peptostreptococcus, as well as decreases in Collinsella and Lachnospiraceae. In conclusion, Cryptosporidium infection has the potential to decrease richness and change the composition of the intestinal microbiota of dairy calves.
RESUMEN
Although there are several studies that described the possible participation of Mycoplasmopsis bovirhinis (formerly, Mycoplasma bovirhinis) in respiratory disease in calves worldwide, none of these evaluated the effects of concomitant infections on the shedding of this organism. Accordingly, this study evaluated the effects of simultaneous respiratory infections in dairy calves on the nasal shedding of M. bovirhinis. A statistical two-step model, using univariable and multivariable with logistic regression was developed to investigate and predict the possible effects of simultaneous infections by Histophilus somni, Mannheimia haemolytica, Pasteurella multocida, bovine coronavirus (BCoV), and ovine gammaherpesvirus 2 (OvGHV2) in dairy calves on the nasal shedding of M. bovirhinis. The multivariable analysis demonstrated that dairy calves infected with OvGHV2 have 2.59 times likelihood of nasal shedding of M. bovirhinis relative to calves not infected by OvGHV2, while the odds of nasal shedding of M. bovirhinis was 3.46 times higher in dairy calves infected by M. haemolytica. In contrast, simultaneous respiratory infections in dairy calves by H. somni, P. multocida, and BCoV had no direct effect on the nasal shedding of M. bovirhinis. Consequently, infections by OvGHV2 and M. haemolytica may be possible risk factors for the nasal shedding of M. bovirhinis in dairy calves. These results demonstrated the importance of disease modeling in veterinary medicine to predict and understand the complex outcomes of associations in animals concomitantly infected by several disease pathogens.
RESUMEN
This report aims to describe the identification of porcine astrovirus 3 (PAstV3) RNA in the central nervous system (CNS) of weaned pigs with clinical signs of neurological disease associated with polioencephalomyelitis in southeastern Brazil. Three, 20 -35 days-old piglets that died after clinical manifestations of a neurological syndrome were submitted to post-mortem evaluations. Tissue samples were examined by histopathology, bacteriology, and molecular assays (RT-PCR, nested-PCR, RT-qPCR, and Sanger sequencing) to detect the primary infectious disease agents associated with neurological disease in pigs. The principal neuropathological alterations occurred in the grey matter of the spinal cord and brainstem resulting in nonsuppurative poliomyelitis and rhombencephalitis. PAstV3 RNA was detected in the CNS samples of all piglets with histopathological evidence of disease and was confirmed by nucleotide sequencing. Nucleic acids from pathogens commonly associated with neurological diseases in pigs, such as porcine teschovirus, porcine sapelovirus, porcine enterovirus G, atypical porcine pestivirus, senecavirus A, and encephalomyocarditis virus was not detected by molecular assays in the three piglets. This is the first report of PAstV3 in piglets with neurological disease and lesions consistent with polioencephalomyelitis in Brazil. This report highlights the importance of monitoring health events that could compromise pig farming productivity and animal welfare.
Asunto(s)
Encefalomielitis , Mamastrovirus , ARN Viral , Enfermedades de los Porcinos , Animales , Porcinos , Brasil , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/patología , ARN Viral/genética , Mamastrovirus/aislamiento & purificación , Mamastrovirus/genética , Encefalomielitis/veterinaria , Encefalomielitis/virología , Encefalomielitis/patología , Infecciones por Astroviridae/veterinaria , Infecciones por Astroviridae/virología , Infecciones por Astroviridae/patología , Filogenia , Sistema Nervioso Central/virología , Sistema Nervioso Central/patología , Médula Espinal/patología , Médula Espinal/virologíaRESUMEN
Bovine respiratory disease (BRD) is a common global health problem in dairy cattle. The definitive diagnosis of BRD is complex because its etiology involves several predisposing and determining factors. This report describes the etiology of a BRD outbreak in a dairy herd in the mesoregion of Central Eastern Paraná, which simultaneously affected young (calves and heifers) and adult (cows) Holstein-Friesian cattle. Nine biological samples, consisting of five lung samples from two cows and three suckling calves, and four nasal swab samples from heifers, were used for etiological diagnosis. The nucleic acids extracted from lung fragments and nasal swabs were subjected to PCR and RT-PCR assays for partial amplification of the genes of five viruses [bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoAHV1), bovine respiratory syncytial virus (BRSV), bovine parainfluenza virus 3 (BPIV-3), and bovine coronavirus (BCoV)] and four bacteria (Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) involved in the etiology of BRD. All nine biological samples from the animals with BRD tested negative for BoAHV1, BRSV, BPIV-3, BCoV, and H. somni. Therefore, the involvement of these microorganisms in the etiology of BRD outbreak can be ruled out. It was possible to identify the presence of BVDV and M. bovis in singular and mixed infections of the lower respiratory tract in cattle. BVDV was also identified in two nasal swabs: one as a single etiological agent and the other in association with two bacteria (P. multocida and M. haemolytica). The phylogenetic analysis conducted in the nucleotide sequence of the 5'UTR region and Npro gene of the BVDV amplicons demonstrated that the BVDV field strains of this BRD outbreak belong to subgenotype 2b. To the best of our knowledge, this is the first report of BVDV-2b involvement in the etiology of BRD in Brazil. Finally, it is necessary to highlight that the cattle were obtained from an open dairy herd with biannual vaccinations for BVDV-1a and - 2a.
RESUMEN
The Macavirus genus, Gammaherpesvirinae subfamily, Herpesviridae family, contains ovine gammaherpesvirus 2 (OvGHV2), the cause of sheep-associated malignant catarrhal fever (SA-MCF). Members of the Macavirus genus associated with the development of malignant catarrhal fever (MCF) in their respective hosts share the 15A antigenic epitope, are conserved within the DNA polymerase gene and are collectively referred to as the malignant catarrhal fever virus (MCFV) complex. The ability of MCFV and/or OvGHV2 to produce abortions in ruminants is currently unknown, with little documentation of infections by these agents in bovine fetuses. This report presents the findings observed due to the detection of OvGHV2 DNA and MCFV tissue antigens in aborted bovine fetuses from southern Brazil. Four aborted bovine fetuses from three farms, located in a geographical region of Paraná State with elevated immunohistochemical (IHC) prevalence of MCFV tissue antigens, with gestational ages varying between 78 to 208 days were investigated. Significant gross and histopathological alterations were not observed in any of these fetuses. An IHC assay using the 15A-monoclonal antibody (15A-MAb), which is based on the 15A antigenic epitope of Macavirus, identified MCFV tissue antigens in multiple organs from two fetuses (#1 and #4); however, positive immunoreactivity to the 15A-MAb IHC assay was not detected in Fetus #2 and #3. Molecular testing amplified OvGHV2 DNA only from the myocardium and lungs of Fetus #1 that had positive intracytoplasmic immunoreactivity to the 15A-MAb IHC assay in these tissues. Furthermore, infections by Leptospira spp. were confirmed by molecular assays in fetuses #1, #3, and #4, while PCR detected Neospora caninum in the myocardium of Fetus #2. Additionally, molecular assays to identify well-known fetopathy agents of cattle, including bovine viral diarrhea virus, bovine alphaherpesvirus 1, Histophilus somni, and Listeria monocytogenes, did not amplify the nucleic acids of these pathogens. PCR assays to identify bovine gammaherpesvirus 6 (BoGHV6), another Macavirus known to infect cattle in Brazil, were unsuccessful. These findings confirmed that the 15A-MAb IHC assay can be efficiently used to detect MCFV antigens in organs of aborted bovine fetuses. The identification of MCFV antigens with the simultaneous detection of OvGHV2 DNA confirmed that Fetus #1 was infected by OvGHV2 and added to the few descriptions of this infection in aborted fetuses of ruminants worldwide. Moreover, the IHC detection of MCFV in multiple organs of Fetus #4, without the molecular detection of OvGHV2 or BoGHV6, may suggest that this fetus was infected by a Macavirus that was not previously diagnosed in cattle herds from Brazil. These findings strongly suggest that OvGHV2 and MCFV can produce transplacental infections in cattle.
RESUMEN
The microbiota plays an important role in numerous physiological processes, pathogenesis, development, and metabolism in different animal species. In humans, several studies have demonstrated an association between the vaginal microbiota and fertility rates, and even success in assisted reproduction techniques. In the context of cattle reproduction, although few studies have addressed the microbiota in a healthy state (which is not associated with diseases that affect the reproductive tract of cows), changes in its composition also seem to influence fertility. This review aims to explain the importance of the reproductive microbiota in female bovines and what is available in the literature regarding its possible role in increasing fertility. What are the challenges involved in this process? Future perspectives on its use and manipulation as a selection or intervention tool. Will it be possible to one day extrapolate the findings to reality and apply them in the field? In short, understanding the role of the reproductive microbiota of female bovines can signal the prospect of increasing production, whether of milk or meat, from the same number of animals, as it can optimize reproductive efficiency and perhaps become an allied tool for the economic profitability and sustainability of livestock farming.
RESUMEN
Ovine gammaherpesvirus 2 (OvGHV2), is a Macavirus and the cause of sheep-associated malignant catarrhal fever (SA-MCF), in which sheep are the asymptomatic reservoir hosts. Susceptible mammalian populations infected by OvGHV2 may develop clinical SA-MCF or subclinical infections. All members of the Macavirus genus known to be associated with MCF are collectively referred to as the MCF virus (MCFV) complex. This report describes the occurrence of subclinical OvGHV2-related infections in free-ranging wild boars (Sus scrofa) from southern Brazil. Specific body organs (n = 14) and biological samples (nasal and oral swabs; n = 17) were collected from 24 asymptomatic wild boars from a conservation unit located within the Central-eastern mesoregion of Paraná State. Organs were processed to observe histopathological patterns suggestive of diseases of domestic animals; only pulmonary samples were used in an immunohistochemical assay designed to detect MCFV tissue antigens. Furthermore, all samples were submitted to molecular assays designed to detect the OvGHV2 tegument protein gene. Viral-induced pneumonia was diagnosed in two wild boars; one of these contained OvGHV2 DNA, with MCFV antigens identified in the other. Additionally, MCFV tissue antigens were detected within pulmonary epithelial cells of the lungs with and without pulmonary disease. Collectively, OvGHV2 was detected in 37.5% (9/24) of all wild boars, with detection occurring in the organs of 57.1% (8/14) wild boars and the oral cavity of one animal. These results demonstrated that these wild boars were subclinically infected by OvGHV2, and that infection produced typical pulmonary alterations. In addition, the detection of OvGHV2 within the oral cavity of one wild boar may suggest that this animal may be a potential disseminator of this pathogen to susceptible animal populations, including livestock and wildlife, acting as a possible bridge host for OvGHV2. Furthermore, infection by OvGHV2 probably occurred due to incidental contact with asymptomatic sheep maintained within the surrounding rural areas and not within the conservation units.
RESUMEN
Ovine gammaherpesvirus 2 (OvGHV2) produces sheep-associated malignant catarrhal fever (SA-MCF), a frequently lethal, lymphoproliferative disease that is characterized by widespread vascular lesions. Most studies that evaluated the viral load in tissues of animals with SA-MCF were done in the Northern Hemisphere, with scant information from the Southern part of the globe. This study investigated the viral load of OvGHV2 in the tissues of cattle and an underdeveloped fetus with SA-MCF from three distinct biomes of Brazil. All animals had clinical and histopathological manifestations consistent with SA-MCF. Molecular testing identified the OvGHV2 tegument protein and glycoprotein B genes in the tissues of all animals and the fetus. Viral quantification based on the DNA polymerase gene detected elevated loads of OvGHV2 in tissues with histopathological evidence of SA-MCF and organs with unknown histological data, except for the tissues of the fetus, where the viral load was comparatively reduced. The viral loads detected in multiple organs of cattle from this study with SA-MCF are consistent with those identified in different animal species from the USA and Europe. The detection of a low viral load of OvGHV2 in fetal tissue confirmed transplacental dissemination since elevated viral loads were detected in multiple tissues of the cow with SA-MCF. Furthermore, the elevated viral loads detected in the pulmonary tissues of cattle with interstitial pneumonia indicate that OvGHV2 is an inductor of pulmonary disease in cattle.
Asunto(s)
Gammaherpesvirinae , Fiebre Catarral Maligna , Carga Viral , Animales , Fiebre Catarral Maligna/virología , Fiebre Catarral Maligna/patología , Gammaherpesvirinae/aislamiento & purificación , Gammaherpesvirinae/genética , Bovinos , Brasil , Ovinos , Femenino , Enfermedades de las Ovejas/virología , Enfermedades de las Ovejas/patología , ADN Viral/genética , Enfermedades de los Bovinos/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Feto/virologíaRESUMEN
This study aims to determine the serological profile of high-yielding dairy cows for four main viruses (bovine alphaherpesvirus 1 (BoAHV1), bovine viral diarrhea virus (BVDV), bovine parainfluenza virus 3 (BPIV3), and bovine respiratory syncytial virus (BRSV)) related to bovine respiratory disease (BRD) in cattle herds worldwide. In this survey, 497 blood serum samples were collected from non-vaccinated dairy cows without clinical respiratory signs in 39 herds in the central-eastern mesoregion of Paraná State, South Brazil. The presence of neutralizing antibodies was determined by virus neutralization (VN) tests. VN antibodies against BoAHV1, BVDV, BPIV3, and BRSV were detected in 355 (71.4%), 280 (56.3%), 481 (96.8%), and 315 (63.4%) serum samples, respectively. The frequencies of seropositive herds for BoAHV1, BVDV, BPIV3, and BRSV were 79.5 (n = 31), 82.0 (n = 32), 100 (n = 39), and 84.6% (n = 33), respectively. The frequencies of seropositive cows varied according to the type of herd management and the number of cows in the herd. The detection of VN antibodies in unvaccinated dairy cattle herds demonstrated the endemic circulation of the four viruses in the herds evaluated. For BRD prevention, it is recommended to implement a vaccination program for cows that provides passive immunity in calves and active immunity in cows.
RESUMEN
This study aimed to investigate the effect of age and genetics on the fecal microbiota of beef calves. Ten purebred Nellore (Bos taurus indicus) and ten crossbreed 50% Nellore-50% European breed (Bos taurus taurus) calves co-habiting on the same pasture paddock had fecal samples collected on days five (5 d), 14 d, 28 d, 60 d, 90 d, 180 d, 245 d (weaning) and 260 d after birth. All calves were kept with their mothers, and six Nellore dams were also sampled at weaning. Microbiota analysis was carried out by amplification of the V4 region of the 16S rRNA gene following high-throughput sequencing with a MiSeq Illumina platform. Results revealed that bacterial richness increased with age and became more similar to adults near weaning. Differences in microbiota membership between breeds were found at 60 d and 90 d and for structure at 60 d, 90 d, 245 d, and 260 d (p < 0.05). In addition, crossbreed calves presented less variability in their microbiota. In conclusion, the genetic composition significantly impacted the distal gut microbiota of calves co-habiting in the same environment, and further studies investigating food intake can reveal possible associations between microbiota composition and performance.
RESUMEN
Bovine viral diarrhea virus (BVDV) infection has a significant economic impact on beef and dairy industries worldwide. Fetal infection with a non-cytopathic strain may lead to the birth of persistently infected (PI) offspring, which is the main event in the epidemiological chain of BVDV infection. This report describes the birth of 99 BVDV-PI heifer calves within 52 days of birth in a regular BVDV-vaccinated Brazilian dairy cattle herd and the subgenotypes of the infecting field strains. This study was conducted in a high-yielding open dairy cattle herd that frequently acquired heifers from neighboring areas for replacement. The farm monitors the birth of PI calves by screening all calves born using an ELISA (IDEXX) for BVDV antigen detection. All calves aged 1-7 days were evaluated. For positive and suspected results, the ELISA was repeated when the calves were close to one month old. A total of 294 heifer calves were evaluated between February and March 2021. Of these, 99 (33.7 %) had positive ELISA results and were considered PI calves. To evaluate the predominant BVDV species and subgenotypes in this outbreak, whole blood samples were collected from 31 calves born during the study period. All samples were submitted to the RT-PCR assay for the partial amplification of the BVDV 5'-UTR region, and these amplicons were subjected to nucleotide sequencing. Phylogenetic analysis identified BVDV-1b and BVDV-1d in 16 and 13 heifer calves, respectively. In two calves, it was not possible to determine the BVDV-1 subgenotype. Detection of PI animals and monitoring of circulating BVDV subgenotype strains are central to disease control. This study shows that regular BVDV vaccination alone may be insufficient to prevent BVDV infection in high-yielding open dairy cattle herds. Other biosecurity measures must be adopted to avoid the purchase of cattle with acute infections by BVDV or BVDV-PI, which can cause a break in the health profile of the herd and economic losses.
Asunto(s)
Diarrea Mucosa Bovina Viral , Virus de la Diarrea Viral Bovina Tipo 1 , Virus de la Diarrea Viral Bovina , Brotes de Enfermedades , Filogenia , Animales , Bovinos , Diarrea Mucosa Bovina Viral/virología , Diarrea Mucosa Bovina Viral/epidemiología , Diarrea Mucosa Bovina Viral/prevención & control , Brotes de Enfermedades/veterinaria , Femenino , Virus de la Diarrea Viral Bovina Tipo 1/genética , Virus de la Diarrea Viral Bovina Tipo 1/clasificación , Virus de la Diarrea Viral Bovina Tipo 1/aislamiento & purificación , Virus de la Diarrea Viral Bovina Tipo 1/inmunología , Brasil/epidemiología , Virus de la Diarrea Viral Bovina/genética , Virus de la Diarrea Viral Bovina/clasificación , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Virus de la Diarrea Viral Bovina/inmunología , Genotipo , Vacunas Virales/inmunología , Ensayo de Inmunoadsorción Enzimática , Industria Lechera , Vacunación/veterinaria , Anticuerpos Antivirales/sangreRESUMEN
Ovine gammaherpesvirus 2 (OvGHV2) is a member of Macavirus genus, subfamily Gammaherpesvirinae, family Herpesviridae, and causes sheep associated-malignant catarrhal fever (SA-MCF) in a wide range of ungulates. However, no descriptions of SA-MCF and/or infections due to OvGHV2 were identified in the wild boar (Sus scrofa). This study investigated the occurrence of OvGHV2 in the lungs (n = 44) of asymptomatic, free ranging wild boars captured in several regions of Paraná State, Southern Brazil. A PCR assay targeting the OvGHV2 tegument protein gene amplified OvGHV2 DNA in 4.55% (2/44) of the pulmonary tissues evaluated. Sequence analysis confirmed that the OvGHV2 strains herein identified have 98.4% deduced amino acid (aa) sequence identity with the prototype strain of OvGHV2 and 96.4-100% aa identity with similar strains of OvGHV2 detected in several animal species from diverse countries. These findings confirmed that these two wild boars were infected by OvGHV2, represent the first description of this infection in these animals, and add to the number of pathogens identified in this animal species. Furthermore, these findings contrast earlier descriptions of OvGHV2 in swine since in all previous reports the infected pigs demonstrated clinical manifestations of disease. Consequently, these wild boars from Southern Brazil were subclinically infected or suffered asymptomatic infections by OvGHV2.
Asunto(s)
Gammaherpesvirinae , Infecciones por Herpesviridae , Filogenia , Sus scrofa , Enfermedades de los Porcinos , Animales , Brasil , Gammaherpesvirinae/genética , Gammaherpesvirinae/aislamiento & purificación , Gammaherpesvirinae/clasificación , Sus scrofa/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Enfermedades de los Porcinos/virología , Porcinos , Pulmón/virología , ADN Viral/genéticaRESUMEN
Bovine coronavirus (BCoV) has dual tropisms that can trigger enteric and respiratory diseases in cattle. Despite its global distribution, BCoV field strains from Brazil remain underexplored in studies investigating the virus's worldwide circulation. Another research gap involves the comparative analysis of S protein sequences in BCoV isolates from passages in cell lines versus direct sequencing from clinical samples. Therefore, one of the objectives of our study was to conduct a comprehensive phylogenetic analysis of BCoV strains identified from Brazil, including a respiratory strain obtained during this study, comparing them with global and ancestral BCoV strains. Additionally, we performed a comparative analysis between wild-type BCoV directly sequenced from the clinical sample (nasal secretion) and the cell culture-adapted strain, utilizing the Sanger method. The field strain and multiple cell passage in cell culture (HRT-18) adapted BCoV strain (BOV19 NS) detected in this study were characterized through molecular and phylogenetic analyses based on partial fragments of 1,448 nt covering the hypervariable region of the S gene. The analyses have demonstrated that different BCoV strains circulating in Brazil, and possibly Brazilian variants, constitute a new genotype (putative G15 genotype). Compared with the ancestral prototype (Mebus strain) of BCoV, 33 nt substitutions were identified of which 15 resulted in non-synonymous mutations (nine transitions and six transversions). Now, compared with the wild-type strain was identified only one nt substitution in nt 2,428 from the seventh passage onwards, which resulted in transversion, neutral-neutral charge, and one substitution of asparagine for tyrosine at aa residue 810 (N810Y).
Asunto(s)
Enfermedades de los Bovinos , Coronavirus Bovino , Filogenia , Bovinos , Brasil , Coronavirus Bovino/genética , Coronavirus Bovino/aislamiento & purificación , Coronavirus Bovino/clasificación , Animales , Enfermedades de los Bovinos/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Genotipo , Glicoproteína de la Espiga del Coronavirus/genética , Infecciones del Sistema Respiratorio/virología , Línea CelularRESUMEN
The role of Mycoplasma bovirhinis in the development of pulmonary disease in cattle is controversial and was never evaluated in cattle from Latin America. This study investigated the respiratory infection dynamics associated with M. bovirhinis in suckling calves from 15 dairy cattle herds in Southern Brazil. Nasal swabs were obtained from asymptomatic (n = 102) and calves with clinical manifestations (n = 103) of bovine respiratory disease (BRD) and used in molecular assays to identify the specific genes of viral and bacterial disease pathogens of BRD. Only M. bovirhinis, bovine coronavirus (BCoV), ovine gammaherpesvirus 2 (OvGHV2), Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica were detected. M. bovirhinis was the most frequently diagnosed pathogen in diseased (57.8%; 59/102) and asymptomatic (55.3%; 57/103) calves at all farms. BCoV-related infections were diagnosed in diseased (52%; 53/102) and asymptomatic (51.4%; 53/103) calves and occurred in 93.3% (14/15) of all farms. Similarly, infectious due to OvGHV2 occurred in diseased (37.2%; 38/102) and asymptomatic (27.2%; /28/103) calves and were diagnosed in 80% (12/15) of all farms investigated. Significant statistical differences were not identified when the two groups of calves were compared at most farms, except for infections due to OvGHV2 that affected five calves at one farm. These results demonstrated that the respiratory infection dynamics of M. bovirhinis identified in Southern Brazil are similar to those observed worldwide, suggesting that there is not enough sufficient collected data to consider M. bovirhinis as a pathogen of respiratory infections in cattle. Additionally, the possible roles of BCoV and OvGHV2 in the development of BRD are discussed.
RESUMEN
The Macavirus, ovine gammaherpesvirus 2 (OvGHV2), is the cause of sheep-associated malignant catarrhal fever (SA-MCF). Although SA-MCF occurs in a wide range of mammalian hosts, there are few descriptions of this disease and/or infection in goats. This report describes the findings observed in a goat that was infected by OvGHV2 and adds to the rare description of this infection in this animal species. A 6.5-year-old, female, Anglo Nubian goat, with a neurological syndrome, that was euthanized after severe esophageal obstruction was investigated to determine the cause of the brain disease. Histopathology revealed cerebral cortical edema, hemorrhagic rhombencephalitis, severe hepatic necrosis, and atrophic enteritis. An immunohistochemical (IHC) assay identified intracytoplasmic antigens of a malignant catarrhal fever virus (MCFV) within epithelial cells of the intestine, liver, lungs, and kidneys. A semi-nested PCR assay amplified the partial fragment of the OvGHV2 tegument protein gene from the intestine, confirming that the MCFV identified by IHC was OvGHV2. A qPCR assay that targeted the OvGHV2 polymerase gene revealed an elevated quantification cycle (Cq), while nanoplate-based digital PCR (dPCR) detected low viral copy load within the OvGHV2 DNA. Furthermore, the nucleic acids of several disease pathogens associated with diseases in ruminants were not amplified. However, the exact cause of the neurological syndrome remained obscure since nucleic acids of neurological disease pathogens such as bovine viral diarrhea virus, bovine alphaherpesvirus 1 and 5, Histophilus somni, and OvGHV2 were not detected from the brain. Collectively, the results of the Cq and dPCR confirmed that this goat was infected with a low viral load of OvGHV2, which probably was insufficient to induce the typical histopathological alterations and subsequent clinical manifestations associated with SA-MCF and/or infections by OvGHV2. Therefore, elevated viral loads of OvGHV2 would have been required for the development of histological lesions and/or clinical manifestations of SA-MCF in this goat. Furthermore, the dPCR methodology can be used for the efficient detection and quantification of OvGHV2 DNA in animals with or without clinical and/or histopathological evidence of SA-MCF. Additionally, since previous cases of OvGHV2 infections in goats did not have the typical clinical manifestations of SA-MCF, one wonders if this Macavirus can induce SA-MCF in goats.
Asunto(s)
Gammaherpesvirinae , Fiebre Catarral Maligna , Ácidos Nucleicos , Ovinos , Femenino , Animales , Bovinos , Fiebre Catarral Maligna/patología , Cabras , Gammaherpesvirinae/genética , ADN , Reacción en Cadena de la Polimerasa/métodosRESUMEN
We evaluated the presence of antibodies against CaHV-1, CDV, and CPV-2 in serum samples from Brazilian wild carnivore species. Nine maned wolves and six crab-eating foxes were tested for CaHV-1 and CDV by virus neutralization test and CPV-2 by hemagglutination inhibition assay. Antibodies to CaHV-1, CDV, and CPV-2 were detected in serum samples of 1 (6.7%), 5 (33.3%), and 10 (66.7%) wild carnivores, respectively. Two maned wolves and one crab-eating fox were seropositive simultaneously for CDV and CPV-2. Antibodies against all viruses were detected in one crab-eating fox. This is the first report of CaHV-1 antibody detection in crab-eating foxes.
Asunto(s)
Carnívoros , Virus del Moquillo Canino , Moquillo , Parvovirus Canino , Lobos , Animales , Perros , Brasil/epidemiología , Anticuerpos Antivirales , Animales SalvajesRESUMEN
Bovine respiratory disease (BRD) is a multifactorial and predominantly multietiological disease that affects dairy cattle herds worldwide, being more frequent in young animals. The occurrence of BRD was investigated in lactating cows from two high-yielding dairy herds in southern Brazil. To determine the etiology of the clinical cases of acute respiratory disease, nasal swab samples were collected from cows with clinical signs of BRD and evaluated using PCR and RT-PCR for nucleic acid detection of the main BRD etiological agents, including Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, bovine respiratory syncytial virus, bovine coronavirus, bovine viral diarrhea virus, bovine alphaherpesvirus 1, and bovine parainfluenza virus 3. Only three microorganisms (M. bovis, H. somni, and P. multocida) were identified in both single and mixed infections. We concluded that 40.0% of the cows were infected with M. bovis and 75.0% with H. somni in herd A. Considering both single and mixed infections, the analyses performed in herd B showed that 87.5%, 25.0%, and 50.0% of the cows were infected with M. bovis, H. somni, and P. multocida, respectively. M. bovis and H. somni are considered fastidious bacteria and laboratory diagnosis is neglected. Subsequently, most clinical cases of mycoplasmosis and histophilosis in cattle remain undiagnosed. This study demonstrates the importance of M. bovis and H. somni infections in adult cows with BRD. These results highlight the importance of including these bacteria in the group of etiological agents responsible for the occurrence of BRD in cattle, especially in adult cows with unfavorable immunological conditions, such as recent calving and peak lactation.
Asunto(s)
Infecciones Bacterianas , Enfermedades de los Bovinos , Coinfección , Pasteurella multocida , Animales , Femenino , Bovinos , Coinfección/veterinaria , Lactancia , Enfermedades de los Bovinos/microbiología , Infecciones Bacterianas/veterinaria , Bacterias , Pasteurella multocida/genéticaRESUMEN
Bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoAHV1), bovine respiratory syncytial virus (BRSV), and bovine parainfluenza virus 3 (BPIV-3) are involved in bovine respiratory disease. These viruses can infect the respiratory system and cause considerable economic losses to beef and dairy cattle herds. This study aimed to determine the serological profiles of steers for BVDV, BoAHV1, BRSV, and BPIV-3 upon their arrival at Brazilian feedlot facilities. A total of 1,282 serum samples from unvaccinated steers were obtained on the first day of feeding. Samples were collected from 31 beef cattle herds reared in an extensive rearing system in six Brazilian states. Antibodies against BVDV, BoAHV1, BRSV, and BPIV-3 were detected using a virus neutralization test. The steers were distributed in agreement with their age and the Brazilian state of origin. The highest seropositivity was for BoAHV1 and BPIV-3 at 92.1% (1,154/1,253) and 86.6% (1,100/1,270), respectively. The seropositivity of BRSV was 77.1% (959/1,244). BVDV presented a lower rate, at slightly more than 50% (51.8%; 656/1,266). Age was a risk factor for the presence of antibodies against BVDV, BoAHV1, and BPIV-3 but not BRSV. A positive correlation was identified between BoAHV1 and BPIV-3 (P = 0.85) and between BRSV and BPIV-3 (P = 0.47). The high rate of seropositive steers for these four respiratory viruses on the first day of confinement identified in this serological survey provides important epidemiological information on respiratory infections, as the seropositivity of the four main bovine respiratory viruses in Brazilian beef cattle herds in an extensive rearing system.
Asunto(s)
Enfermedades de los Bovinos , Virus de la Diarrea Viral Bovina , Herpesvirus Bovino 1 , Virus , Animales , Bovinos , Brasil/epidemiología , Enfermedades de los Bovinos/microbiología , Virus de la Parainfluenza 3 Bovina , Anticuerpos AntiviralesRESUMEN
This study investigated the cause of an outbreak of an acute respiratory disease syndrome followed by episodes of diarrhea in a dairy cattle herd from Southern Brazil. Deep nasal swabs (DNS) from asymptomatic calves, calves with pulmonary discomfort, and diarrheic calves after episodes of respiratory distress were used in molecular assays designed to detect the principal pathogens associated with bovine respiratory disease (BRD). Fecal samples were used for the molecular detection of bovine enteric disease agents. Pulmonary tissues from three calves and a cow that died were evaluated by molecular assays to identify 11 agents associated with the development of BRD. The intestinal and pulmonary fragments of one calf and the cow revealed atrophic enteritis and interstitial pneumonia by histopathology, respectively. Immunohistochemistry (IHC) identified intralesional antigens of a malignant catarrhal fever virus, genus Macavirus, within epithelial cells of the lungs and intestines. Molecular assays amplified ovine gammaherpesvirus 2 (OvGHV2) from most of the DNS, and the pulmonary and intestinal fragments from the animals that died, confirming that the Macavirus identified by IHC was OvGHV2. Concomitant pulmonary infections of OvGHV2 with bovine gammaherpesvirus 6 and bovine coronavirus were identified. Additionally, bovine viral diarrhea virus 1b and Aichivirus B were detected in the fecal samples. These findings demonstrated that OvGHV2, a Macavirus, was the disease agent most frequently (81.2%; 13/16) associated with singular pulmonary infections during this outbreak of BRD, suggesting that this virus may be another potential agent of respiratory disease of cattle.