Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Mol Neurobiol ; 61(1): 120-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37589833

RESUMEN

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3, APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic, and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice have lower synaptic activity, but higher levels of paired-pulse facilitation (PPF) and long-term potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high-frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype, and angiotensin II in AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Ratones , Humanos , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Angiotensina II/farmacología , Apolipoproteína E3/genética , Ratones Transgénicos , Apolipoproteínas E/genética , Enfermedad de Alzheimer/metabolismo , Potenciación a Largo Plazo
2.
Mol Biol Cell ; 35(1): ar10, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991902

RESUMEN

α-Synuclein is a presynaptic protein that regulates synaptic vesicle (SV) trafficking. In Parkinson's disease (PD) and dementia with Lewy bodies (DLB), α-synuclein aberrantly accumulates throughout neurons, including at synapses. During neuronal activity, α-synuclein is reversibly phosphorylated at serine 129 (pS129). While pS129 comprises ∼4% of total α-synuclein under physiological conditions, it dramatically increases in PD and DLB brains. The impacts of excess pS129 on synaptic function are currently unknown. We show here that compared with wild-type (WT) α-synuclein, pS129 exhibits increased binding and oligomerization on synaptic membranes and enhanced vesicle "microclustering" in vitro. Moreover, when acutely injected into lamprey reticulospinal axons, excess pS129 α-synuclein robustly localized to synapses and disrupted SV trafficking in an activity-dependent manner, as assessed by ultrastructural analysis. Specifically, pS129 caused a declustering and dispersion of SVs away from the synaptic vicinity, leading to a significant loss of total synaptic membrane. Live imaging further revealed altered SV cycling, as well as microclusters of recently endocytosed SVs moving away from synapses. Thus, excess pS129 caused an activity-dependent inhibition of SV trafficking via altered vesicle clustering/reclustering. This work suggests that accumulation of pS129 at synapses in diseases like PD and DLB could have profound effects on SV dynamics.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfoserina/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Lampreas
3.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37561580

RESUMEN

Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gßγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gßγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gßγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gßγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gßγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Insulinas , Ratones , Animales , Calcio/metabolismo , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Exocitosis/fisiología , Proteínas SNARE/genética , Dieta , Obesidad/genética , Adipocitos/metabolismo , Insulinas/metabolismo , Insulina/metabolismo
4.
Res Sq ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37292788

RESUMEN

Progressive hippocampal degeneration is a key component of Alzheimer's disease (AD) progression. Therefore, identifying how hippocampal neuronal function is modulated early in AD is an important approach to eventually prevent degeneration. AD-risk factors and signaling molecules likely modulate neuronal function, including APOE genotype and angiotensin II. Compared to APOE3 , APOE4 increases AD risk up to 12-fold, and high levels of angiotensin II are hypothesized to disrupt neuronal function in AD. However, the extent that APOE and angiotensin II modulates the hippocampal neuronal phenotype in AD-relevant models is unknown. To address this issue, we used electrophysiological techniques to assess the impact of APOE genotype and angiotensin II on basal synaptic transmission, presynaptic and post-synaptic activity in mice that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce Aß. We found that compared to E3FAD mice, E4FAD mice had lower basal synaptic activity, but higher levels of paired pulse facilitation (PPF) and Long-Term Potentiation (LTP) in the Schaffer Collateral Commissural Pathway (SCCP) of the hippocampus. We also found that exogenous angiotensin II has a profound inhibitory effect on hippocampal LTP in both E3FAD and E4FAD mice. Collectively, our data suggests that APOE4 and Aß are associated with a hippocampal phenotype comprised of lower basal activity and higher responses to high frequency stimulation, the latter of which is suppressed by angiotensin II. These novel data suggest a potential mechanistic link between hippocampal activity, APOE4 genotype and angiotensin II in AD.

5.
J Imaging ; 9(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37367469

RESUMEN

Light sheet microscopy in live cells requires minimal excitation intensity and resolves three-dimensional (3D) information rapidly. Lattice light sheet microscopy (LLSM) works similarly but uses a lattice configuration of Bessel beams to generate a flatter, diffraction-limited z-axis sheet suitable for investigating subcellular compartments, with better tissue penetration. We developed a LLSM method for investigating cellular properties of tissue in situ. Neural structures provide an important target. Neurons are complex 3D structures, and signaling between cells and subcellular structures requires high resolution imaging. We developed an LLSM configuration based on the Janelia Research Campus design or in situ recording that allows simultaneous electrophysiological recording. We give examples of using LLSM to assess synaptic function in situ. In presynapses, evoked Ca2+ entry causes vesicle fusion and neurotransmitter release. We demonstrate the use of LLSM to measure stimulus-evoked localized presynaptic Ca2+ entry and track synaptic vesicle recycling. We also demonstrate the resolution of postsynaptic Ca2+ signaling in single synapses. A challenge in 3D imaging is the need to move the emission objective to maintain focus. We have developed an incoherent holographic lattice light-sheet (IHLLS) technique to replace the LLS tube lens with a dual diffractive lens to obtain 3D images of spatially incoherent light diffracted from an object as incoherent holograms. The 3D structure is reproduced within the scanned volume without moving the emission objective. This eliminates mechanical artifacts and improves temporal resolution. We focus on LLS and IHLLS applications and data obtained in neuroscience and emphasize increases in temporal and spatial resolution using these approaches.

6.
J Neurosci ; 42(12): 2385-2403, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35063999

RESUMEN

Efficient and reliable neurotransmission requires precise coupling between action potentials (APs), Ca2+ entry and neurotransmitter release. However, Ca2+ requirements for release, including the number of channels required, their subtypes, and their location with respect to primed vesicles, remains to be precisely defined for central synapses. Indeed, Ca2+ entry may occur through small numbers or even single open Ca2+ channels, but these questions remain largely unexplored in simple active zone (AZ) synapses common in the nervous system, and key to addressing Ca2+ channel and synaptic dysfunction underlying numerous neurologic and neuropsychiatric disorders. Here, we present single channel analysis of evoked AZ Ca2+ entry, using cell-attached patch clamp and lattice light-sheet microscopy (LLSM), resolving small channel numbers evoking Ca2+ entry following depolarization, at single AZs in individual central lamprey reticulospinal presynaptic terminals from male and females. We show a small pool (mean of 23) of Ca2+ channels at each terminal, comprising N-(CaV2.2), P/Q-(CaV2.1), and R-(CaV2.3) subtypes, available to gate neurotransmitter release. Significantly, of this pool only one to seven channels (mean of 4) open on depolarization. High temporal fidelity lattice light-sheet imaging reveals AP-evoked Ca2+ transients exhibiting quantal amplitude variations of 0-6 event sizes between individual APs and stochastic variation of precise locations of Ca2+ entry within the AZ. Further, total Ca2+ channel numbers at each AZ correlate to the number of presynaptic primed synaptic vesicles. Dispersion of channel openings across the AZ and the similar number of primed vesicles and channels indicate that Ca2+ entry via as few as one channel may trigger neurotransmitter release.SIGNIFICANCE STATEMENT Presynaptic Ca2+ entry through voltage-gated calcium channels (VGCCs) causes neurotransmitter release. To understand neurotransmission, its modulation, and plasticity, we must quantify Ca2+ entry and its relationship to vesicle fusion. This requires direct recordings from active zones (AZs), previously possible only at calyceal terminals containing many AZs, where few channels open following action potentials (APs; Sheng et al., 2012), and even single channel openings may trigger release (Stanley, 1991, 1993). However, recording from more conventional terminals with single AZs commonly found centrally has thus far been impossible. We addressed this by cell-attached recordings from acutely dissociated single lamprey giant axon AZs, and by lattice light sheet microscopy of presynaptic Ca2+ entry. We demonstrate nanodomains of presynaptic VGCCs coupling with primed vesicles with 1:1 stoichiometry.


Asunto(s)
Calcio , Terminales Presinápticos , Animales , Femenino , Lampreas , Masculino , Neurotransmisores , Terminales Presinápticos/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas
7.
J Neurosci ; 42(6): 980-1000, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34949691

RESUMEN

In presynaptic terminals, membrane-delimited Gi/o-mediated presynaptic inhibition is ubiquitous and acts via Gßγ to inhibit Ca2+ entry, or directly at SNARE complexes to inhibit Ca2+-dependent synaptotagmin-SNARE complex interactions. At CA1-subicular presynaptic terminals, 5-HT1B and GABAB receptors colocalize. GABAB receptors inhibit Ca2+ entry, whereas 5-HT1B receptors target SNARE complexes. We demonstrate in male and female rats that GABAB receptors alter Pr, whereas 5-HT1B receptors reduce evoked cleft glutamate concentrations, allowing differential inhibition of AMPAR and NMDAR EPSCs. This reduction in cleft glutamate concentration was confirmed by imaging glutamate release using a genetic sensor (iGluSnFR). Simulations of glutamate release and postsynaptic glutamate receptor currents were made. We tested effects of changes in vesicle numbers undergoing fusion at single synapses, relative placement of fusing vesicles and postsynaptic receptors, and the rate of release of glutamate from a fusion pore. Experimental effects of Pr changes, consistent with GABAB receptor effects, were straightforwardly represented by changes in numbers of synapses. The effects of 5-HT1B receptor-mediated inhibition are well fit by simulated modulation of the release rate of glutamate into the cleft. Colocalization of different actions of GPCRs provides synaptic integration within presynaptic terminals. Train-dependent presynaptic Ca2+ accumulation forces frequency-dependent recovery of neurotransmission during 5-HT1B receptor activation. This is consistent with competition between Ca2+-synaptotagmin and Gßγ at SNARE complexes. Thus, stimulus trains in 5-HT1B receptor agonist unveil dynamic synaptic modulation and a sophisticated hippocampal output filter that itself is modulated by colocalized GABAB receptors, which alter presynaptic Ca2+ In combination, these pathways allow complex presynaptic integration.SIGNIFICANCE STATEMENT Two G protein-coupled receptors colocalize at presynaptic sites, to mediate presynaptic modulation by Gßγ, but one (a GABAB receptor) inhibits Ca2+ entry whereas another (a 5-HT1B receptor) competes with Ca2+-synaptotagmin binding to the synaptic vesicle machinery. We have investigated downstream effects of signaling and integrative properties of these receptors. Their effects are profoundly different. GABAB receptors alter Pr leaving synaptic properties unchanged, whereas 5-HT1B receptors fundamentally change properties of synaptic transmission, modifying AMPAR but sparing NMDAR responses. Coactivation of these receptors allows synaptic integration because of convergence of GABAB receptor alteration on Ca2+ and the effect of this altered Ca2+ signal on 5-HT1B receptor signaling. This presynaptic convergence provides a novel form of synaptic integration.


Asunto(s)
Terminales Presinápticos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transmisión Sináptica/fisiología , Animales , Femenino , Hipocampo/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
8.
Opt Express ; 29(15): 23888-23901, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614645

RESUMEN

We propose an Incoherent holography detection technique for lattice light-sheet (IHLLS) systems for 3D imaging without moving either the sample stage or the detection microscope objective, providing intrinsic instrumental simplicity and high accuracy when compared to the original LLS schemes. The approach is based on a modified dual-lens Fresnel Incoherent Correlation Holography technique to produce a complex hologram and to provide the focal distance needed for the hologram reconstruction. We report such an IHLLS microscope, including characterization of the sensor performance, and demonstrate a significant contrast improvement on beads and neuronal structures within a biological test sample as well as quantitative phase imaging. The IHLLS has similar or better transverse performances when compared to the LLS technique. In addition, the IHLLS allows for volume reconstruction from fewer z-galvo displacements, thus facilitating faster volume acquisition.

9.
J Imaging ; 7(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34677283

RESUMEN

Fresnel incoherent correlation holography (FINCH) was a milestone in incoherent holography. In this roadmap, two pathways, namely the development of FINCH and applications of FINCH explored by many prominent research groups, are discussed. The current state-of-the-art FINCH technology, challenges, and future perspectives of FINCH technology as recognized by a diverse group of researchers contributing to different facets of research in FINCH have been presented.

10.
Elife ; 102021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34569930

RESUMEN

Transient receptor potential melastatin 7 (TRPM7) contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in central nervous system (CNS) neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmissions from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.


Asunto(s)
Endocitosis , Inhibición Neural , Plasticidad Neuronal , Neuronas/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Células Cromafines/metabolismo , Potenciales Postsinápticos Excitadores , Femenino , Células HEK293 , Humanos , Potenciales Postsinápticos Inhibidores , Cinética , Masculino , Ratones Noqueados , Vesículas Sinápticas/genética , Canales Catiónicos TRPM/genética
11.
Front Cell Neurosci ; 15: 619777, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746713

RESUMEN

Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.

12.
J Neurosci ; 40(44): 8478-8490, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998974

RESUMEN

Meso-diencephalic dopaminergic neurons are known to modulate locomotor behaviors through their ascending projections to the basal ganglia, which in turn project to the mesencephalic locomotor region, known to control locomotion in vertebrates. In addition to their ascending projections, dopaminergic neurons were found to increase locomotor movements through direct descending projections to the mesencephalic locomotor region and spinal cord. Intriguingly, fibers expressing tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, were also observed around reticulospinal neurons of lampreys. We now examined the origin and the role of this innervation. Using immunofluorescence and tracing experiments, we found that fibers positive for dopamine innervate reticulospinal neurons in the four reticular nuclei of lampreys. We identified the dopaminergic source using tracer injections in reticular nuclei, which retrogradely labeled dopaminergic neurons in a caudal diencephalic nucleus (posterior tuberculum [PT]). Using voltammetry in brain preparations isolated in vitro, we found that PT stimulation evoked dopamine release in all four reticular nuclei, but not in the spinal cord. In semi-intact preparations where the brain is accessible and the body moves, PT stimulation evoked swimming, and injection of a D1 receptor antagonist within the middle rhombencephalic reticular nucleus was sufficient to decrease reticulospinal activity and PT-evoked swimming. Our study reveals that dopaminergic neurons have access to command neurons that integrate sensory and descending inputs to activate spinal locomotor neurons. As such, our findings strengthen the idea that dopamine can modulate locomotor behavior both via ascending projections to the basal ganglia and through descending projections to brainstem motor circuits.SIGNIFICANCE STATEMENT Meso-diencephalic dopaminergic neurons play a key role in modulating locomotion by releasing dopamine in the basal ganglia, spinal networks, and the mesencephalic locomotor region, a brainstem region that controls locomotion in a graded fashion. Here, we report in lampreys that dopaminergic neurons release dopamine in the four reticular nuclei where reticulospinal neurons are located. Reticulospinal neurons integrate sensory and descending suprareticular inputs to control spinal interneurons and motoneurons. By directly modulating the activity of reticulospinal neurons, meso-diencephalic dopaminergic neurons control the very last instructions sent by the brain to spinal locomotor circuits. Our study reports on a new direct descending dopaminergic projection to reticulospinal neurons that modulates locomotor behavior.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Locomoción/fisiología , Formación Reticular/fisiología , Médula Espinal/fisiología , Animales , Fenómenos Biomecánicos , Antagonistas de Dopamina/farmacología , Estimulación Eléctrica , Fenómenos Electrofisiológicos , Lampreas , Fibras Nerviosas/fisiología , Receptores de Dopamina D1/antagonistas & inhibidores , Natación , Tirosina 3-Monooxigenasa/fisiología
13.
Heliyon ; 6(5): e03919, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32478184

RESUMEN

APOE4 is a major genetic risk factor for Alzheimer's disease and high amyloid-ß (Aß) levels in the brain are a pathological hallmark of the disease. However, the contribution of specific APOE-modulated Aß-dependent and Aß-independent functions to cognitive decline remain unclear. Increasing evidence supports a role of APOE in modulating cerebrovascular function, however whether ameliorating this dysfunction can improve behavioral function is still under debate. We have previously demonstrated that systemic epidermal growth factor (EGF) treatment, which is important for vascular function, at early stages of pathology (treatment from 6 to 8 months) is beneficial for recognition and spatial memory and cerebrovascular function in female mice that express APOE4. These data raise the important question of whether EGF can improve APOE4-associated cerebrovascular and behavioral dysfunction when treatment is initiated at an age of advanced pathology. Positive findings would support the development of therapies that target cerebrovascular dysfunction associated with APOE4 in aging and AD in individuals with advanced cognitive impairment. Therefore, in this study female mice that express APOE4 in the absence (E4FAD- mice) or presence (E4FAD+ mice) of Aß overproduction were treated from 8 to 10 months of age systemically with EGF. EGF treatment mitigated behavioral dysfunction in recognition memory and spatial learning and improved hippocampal neuronal function in both E4FAD+ and E4FAD- mice, suggesting that EGF treatment improves Aß-independent APOE4-associated deficits. The beneficial effects of EGF treatment on behavior occurred in tandem with improved markers of cerebrovascular function, including lower levels of fibrinogen, lower permeability when assessed by MRI and higher percent area coverage of laminin and CD31 in the hippocampus. These data suggest a mechanistic link among EGF signaling, cerebrovascular function and APOE4-associated behavioral deficits in mice with advanced AD-relevant pathology.

15.
J Vis Exp ; (152)2019 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-31680674

RESUMEN

The model organism C. elegans provides an excellent system to perform in vivo calcium imaging. Its transparent body and genetic manipulability allow for the targeted expression of genetically encoded calcium sensors. This protocol outlines the use of these sensors for the in vivo imaging of calcium dynamics in targeted cells, specifically the body wall muscles of the worms. By utilizing the co-expression of presynaptic channelrhodopsin, stimulation of acetylcholine release from excitatory motor neurons can be induced using blue light pulses, resulting in muscle depolarization and reproducible changes in cytoplasmic calcium levels. Two worm immobilization techniques are discussed with varying levels of difficulty. Comparison of these techniques demonstrates that both approaches preserve the physiology of the neuromuscular junction and allow for the reproducible quantification of calcium transients. By pairing optogenetics and functional calcium imaging, changes in postsynaptic calcium handling and homeostasis can be evaluated in a variety of mutant backgrounds. Data presented validates both immobilization techniques and specifically examines the roles of the C. elegans sarco(endo)plasmic reticular calcium ATPase and the calcium-activated BK potassium channel in the body wall muscle calcium regulation.


Asunto(s)
Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Músculos/metabolismo , Animales , Calcio/análisis , ATPasas Transportadoras de Calcio/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología
16.
J Vis Exp ; (152)2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31710023

RESUMEN

This protocol describes a method for spinal cord laminectomy and glass window implantation for in vivo imaging of the mouse spinal cord. An integrated digital vaporizer is utilized to achieve a stable plane of anesthesia at a low-flow rate of isoflurane. A single vertebral spine is removed, and a commercially available cover-glass is overlaid on a thin agarose bed. A 3D-printed plastic backplate is then affixed to the adjacent vertebral spines using tissue adhesive and dental cement. A stabilization platform is used to reduce motion artifact from respiration and heartbeat. This rapid and clamp-free method is well-suited for acute multi-photon fluorescence microscopy. Representative data are included for an application of this technique to two-photon microscopy of the spinal cord vasculature in transgenic mice expressing eGFP:Claudin-5 - a tight junction protein.


Asunto(s)
Laminectomía/métodos , Prótesis e Implantes , Animales , Ratones , Ratones Transgénicos , Plásticos , Médula Espinal
17.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551250

RESUMEN

Presynaptic Ca2+ evokes exocytosis, endocytosis, and synaptic plasticity. However, Ca2+ flux and interactions at presynaptic molecular targets are difficult to quantify because fluorescence imaging has limited resolution. In rats of either sex, we measured single varicosity presynaptic Ca2+ using Ca2+ dyes as buffers, and constructed models of Ca2+ dispersal. Action potentials evoked Ca2+ transients with little variation when measured with low-affinity dye (peak amplitude 789 ± 39 nM, within 2 ms of stimulation; decay times, 119 ± 10 ms). Endogenous Ca2+ buffering capacity, action potential-evoked free [Ca2+]i, and total Ca2+ amounts entering terminals were determined using Ca2+ dyes as buffers. These data constrained Monte Carlo (MCell) simulations of Ca2+ entry, buffering, and removal. Simulations of experimentally-determined Ca2+ fluxes, buffered by simulated calbindin28K well fit data, and were consistent with clustered Ca2+ entry followed within 4 ms by diffusion throughout the varicosity. Repetitive stimulation caused free varicosity Ca2+ to sum. However, simulated in nanometer domains, its removal by pumps and buffering was negligible, while local diffusion dominated. Thus, Ca2+ within tens of nanometers of entry, did not accumulate. A model of synaptotagmin1 (syt1)-Ca2+ binding indicates that even with 10 µM free varicosity evoked Ca2+, syt1 must be within tens of nanometers of channels to ensure occupation of all its Ca2+-binding sites. Repetitive stimulation, evoking short-term synaptic enhancement, does not modify probabilities of Ca2+ fully occupying syt1's C2 domains, suggesting that enhancement is not mediated by Ca2+-syt1 interactions. We conclude that at spatiotemporal scales of fusion machines, Ca2+ necessary for their activation is diffusion dominated.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Terminales Presinápticos/metabolismo , Células Piramidales/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Femenino , Masculino , Ratas , Ratas Sprague-Dawley
18.
J Neurochem ; 149(6): 729-746, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30963576

RESUMEN

Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Células Cromafines/metabolismo , Exocitosis/fisiología , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esfingosina/metabolismo
19.
J Biol Chem ; 294(5): 1661-1670, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710014

RESUMEN

Throughout the past five decades, tremendous advancements have been made in our understanding of G protein signaling and presynaptic inhibition, many of which were published in the Journal of Biological Chemistry under the tenure of Herb Tabor as Editor-in-Chief. Here, we identify these critical advances, including the formulation of the ternary complex model of G protein-coupled receptor signaling and the discovery of Gßγ as a critical signaling component of the heterotrimeric G protein, along with the nature of presynaptic inhibition and its physiological role. We provide an overview for the discovery and physiological relevance of the two known Gßγ-mediated mechanisms for presynaptic inhibition: first, the action of Gßγ on voltage-gated calcium channels to inhibit calcium influx to the presynaptic active zone and, second, the direct binding of Gßγ to the SNARE complex to displace synaptotagmin downstream of calcium entry, which has been demonstrated to be important in neurons and secretory cells. These two mechanisms act in tandem with each other in a synergistic manner to provide more complete spatiotemporal control over neurotransmitter release.


Asunto(s)
Bioquímica/historia , Publicaciones Periódicas como Asunto , Terminales Presinápticos , Receptores Acoplados a Proteínas G/metabolismo , Transmisión Sináptica , Potenciales de Acción , Historia del Siglo XX , Historia del Siglo XXI , Humanos
20.
Sci Signal ; 12(569)2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783011

RESUMEN

G protein-coupled receptors (GPCRs) that couple to Gi/o proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gßγ subunits from activated G proteins decreases the activity of voltage-gated Ca2+ channels (VGCCs), decreasing excitability. A less understood Gßγ-mediated mechanism downstream of Ca2+ entry is the binding of Gßγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABAB receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT1b receptors and adrenergic α2a receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by Gi/o-coupled GPCRs through the Gßγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Calcio , Exocitosis/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Inhibición Neural/fisiología , Fenotipo , Unión Proteica , Transmisión Sináptica/fisiología , Proteína 25 Asociada a Sinaptosomas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...