Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39001243

RESUMEN

Acute Myocardial Infarction (AMI), a common disease that can have serious consequences, occurs when myocardial blood flow stops due to occlusion of the coronary artery. Early and accurate prediction of AMI is critical for rapid prognosis and improved patient outcomes. Metabolomics, the study of small molecules within biological systems, is an effective tool used to discover biomarkers associated with many diseases. This study intended to construct a predictive model for AMI utilizing metabolomics data and an explainable machine learning approach called Explainable Boosting Machines (EBM). The EBM model was trained on a dataset of 102 prognostic metabolites gathered from 99 individuals, including 34 healthy controls and 65 AMI patients. After a comprehensive data preprocessing, 21 metabolites were determined as the candidate predictors to predict AMI. The EBM model displayed satisfactory performance in predicting AMI, with various classification performance metrics. The model's predictions were based on the combined effects of individual metabolites and their interactions. In this context, the results obtained in two different EBM modeling, including both only individual metabolite features and their interaction effects, were discussed. The most important predictors included creatinine, nicotinamide, and isocitrate. These metabolites are involved in different biological activities, such as energy metabolism, DNA repair, and cellular signaling. The results demonstrate the potential of the combination of metabolomics and the EBM model in constructing reliable and interpretable prediction outputs for AMI. The discussed metabolite biomarkers may assist in early diagnosis, risk assessment, and personalized treatment methods for AMI patients. This study successfully developed a pipeline incorporating extensive data preprocessing and the EBM model to identify potential metabolite biomarkers for predicting AMI. The EBM model, with its ability to incorporate interaction terms, demonstrated satisfactory classification performance and revealed significant metabolite interactions that could be valuable in assessing AMI risk. However, the results obtained from this study should be validated with studies to be carried out in larger and well-defined samples.

2.
Diagnostics (Basel) ; 14(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39001254

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes mellitus, and early detection is crucial for effective management. Metabolomics profiling has emerged as a promising approach for identifying potential biomarkers associated with DR progression. This study aimed to develop a hybrid explainable artificial intelligence (XAI) model for targeted metabolomics analysis of patients with DR, utilizing a focused approach to identify specific metabolites exhibiting varying concentrations among individuals without DR (NDR), those with non-proliferative DR (NPDR), and individuals with proliferative DR (PDR) who have type 2 diabetes mellitus (T2DM). METHODS: A total of 317 T2DM patients, including 143 NDR, 123 NPDR, and 51 PDR cases, were included in the study. Serum samples underwent targeted metabolomics analysis using liquid chromatography and mass spectrometry. Several machine learning models, including Support Vector Machines (SVC), Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), and Multilayer Perceptrons (MLP), were implemented as solo models and in a two-stage ensemble hybrid approach. The models were trained and validated using 10-fold cross-validation. SHapley Additive exPlanations (SHAP) were employed to interpret the contributions of each feature to the model predictions. Statistical analyses were conducted using the Shapiro-Wilk test for normality, the Kruskal-Wallis H test for group differences, and the Mann-Whitney U test with Bonferroni correction for post-hoc comparisons. RESULTS: The hybrid SVC + MLP model achieved the highest performance, with an accuracy of 89.58%, a precision of 87.18%, an F1-score of 88.20%, and an F-beta score of 87.55%. SHAP analysis revealed that glucose, glycine, and age were consistently important features across all DR classes, while creatinine and various phosphatidylcholines exhibited higher importance in the PDR class, suggesting their potential as biomarkers for severe DR. CONCLUSION: The hybrid XAI models, particularly the SVC + MLP ensemble, demonstrated superior performance in predicting DR progression compared to solo models. The application of SHAP facilitates the interpretation of feature importance, providing valuable insights into the metabolic and physiological markers associated with different stages of DR. These findings highlight the potential of hybrid XAI models combined with explainable techniques for early detection, targeted interventions, and personalized treatment strategies in DR management.

3.
Sensors (Basel) ; 24(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38894225

RESUMEN

The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors are expected to reach three billion by 2050, becoming more common in smart environments like buildings, campuses, and healthcare facilities. A notable IoT application is the smart campus for educational purposes. Timely notifications are essential in critical scenarios. IoT devices gather and relay important information in real time to individuals with special needs via mobile applications and connected devices, aiding health-monitoring and decision-making. Ensuring IoT connectivity with end users requires long-range communication, low power consumption, and cost-effectiveness. The LPWAN is a promising technology for meeting these needs, offering a low cost, long range, and minimal power use. Despite their potential, mobile IoT and LPWANs in healthcare, especially for emergency response systems, have not received adequate research attention. Our study evaluated an LPWAN-based emergency response system for visually impaired individuals on the Hazara University campus in Mansehra, Pakistan. Experiments showed that the LPWAN technology is reliable, with 98% reliability, and suitable for implementing emergency response systems in smart campus environments.


Asunto(s)
Internet de las Cosas , Humanos , Aplicaciones Móviles , Tecnología Inalámbrica
4.
Healthcare (Basel) ; 11(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958014

RESUMEN

The intricate and multifaceted nature of diabetes disrupts the body's crucial glucose processing mechanism, which serves as a fundamental energy source for the cells. This research aims to predict the occurrence of diabetes in individuals by harnessing the power of machine learning algorithms, utilizing the PIMA diabetes dataset. The selected algorithms employed in this study encompass Decision Tree, K-Nearest Neighbor, Random Forest, Logistic Regression, and Support Vector Machine. To execute the experiments, two software tools, namely Waikato Environment for Knowledge Analysis (WEKA) version 3.8.1 and Python version 3.10, were utilized. To evaluate the performance of the algorithms, several metrics were employed, including true positive rate, false positive rate, precision, recall, F-measure, Matthew's correlation coefficient, receiver operating characteristic area, and precision-recall curves area. Furthermore, various errors such as Mean Absolute Error, Root Mean Squared Error, Relative Absolute Error, and Root Relative Squared Error were examined to assess the accuracy of the models. Upon conducting the experiments, it was observed that Logistic Regression outperformed the other techniques, exhibiting the highest precision of 81 percent using Python and 80.43 percent using WEKA. These findings shed light on the efficacy of machine learning in predicting diabetes and highlight the potential of Logistic Regression as a valuable tool in this domain.

5.
Brain Sci ; 13(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36979266

RESUMEN

Medical education is one of the most sought-after disciplines for its prestigious and noble status. Institutions endeavor to identify admissions criteria to register bright students who can handle the complexity of medical training and become competent clinicians. This study aims to apply statistical and educational data mining approaches to study the relationship between pre-admission criteria and student performance in medical programs at a public university in Saudi Arabia. The present study is a retrospective cohort study conducted at the College of Computer Science, King Khalid University, Abha, Kingdom of Saudi Arabia between February and November 2022. The current pre-admission criterion is the admission score taken as the weighted average of high school percentage (HSP), general aptitude test (GAT) and standard achievement admission test (SAAT), with respective weights of 0.3, 0.3 and 0.4. Regression and optimization techniques have been applied to identify weightages that better fit the data. Five classification techniques-Decision Tree, Neural Network, Random Forest, Naïve Bayes and K-Nearest Neighbors-are employed to develop models to predict student performance. The regression and optimization analyses show that optimized weights of HSP, GAT and SAAT are 0.3, 0.2 and 0.5, respectively. The results depict that the performance of the models improves with admission scores based on optimized weightages. Further, the Neural Network and Naïve Bayes techniques outperform other techniques. Firstly, this study proposes to revise the weights of HSP, GAT and SAAT to 0.3, 0.2 and 0.5, respectively. Secondly, as the evaluation metrics of models remain less than 0.75, this study proposes to identify additional student features for calculating admission scores to select ideal candidates for medical programs.

6.
Ann Med ; 55(2): 2304108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38242107

RESUMEN

BACKGROUND: Most infectious diseases are caused by viruses, fungi, bacteria and parasites. Their ability to easily infect humans and trigger large-scale epidemics makes them a public health concern. Methods for early detection of these diseases have been developed; however, they are hindered by the absence of a unified, interoperable and reusable model. This study seeks to create a holistic and real-time model for swift, preliminary detection of infectious diseases using symptoms and additional clinical data. MATERIALS AND METHODS: In this study, we present a medical knowledge graph (MKG) that leverages multiple data sources to analyse connections between different nodes. Medical ontologies were used to enhance the MKG. We applied various graph algorithms to extract key features. The performance of multiple machine-learning (ML) techniques for influenza and hepatitis detection was assessed, selecting multi-layer perceptron (MLP) and random forest (RF) models due to their superior outcomes. The hyperparameters of both graph-based ML models were automatically fine-tuned. RESULTS: Both the graph-based MLP and RF models showcased the least loss and error rates, along with the most specific, accurate recall, precision and F1 scores. Their Matthews correlation coefficients were also optimal. When compared with existing ML techniques and findings from the literature, these graph-based ML models manifested superior detection accuracy. CONCLUSIONS: The graph-based MLP and RF models effectively diagnosed influenza and hepatitis, respectively. This underlines the potential of graph data science in enhancing ML model performance and uncovering concealed relationships in the MKG.


Asunto(s)
Enfermedades Transmisibles , Hepatitis , Gripe Humana , Humanos , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Aprendizaje Automático , Algoritmos
7.
J Integr Neurosci ; 17(3-4): 447-461, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29689732

RESUMEN

Thermal images play a vital character at nuclear plants, Power stations, Forensic labs biological research, and petroleum products extraction. Safety of thermal images is very important. Image data has some unique features such as intensity, contrast, homogeneity, entropy and correlation among pixels that is why somehow image encryption is trickier as compare to other encryptions. With conventional image encryption schemes it is normally hard to handle these features. Therefore, cryptographers have paid attention to some attractive properties of the chaotic maps such as randomness and sensitivity to build up novel cryptosystems. That is why, recently proposed image encryption techniques progressively more depends on the application of chaotic maps. This paper proposed an image encryption algorithm based on Chebyshev chaotic map and S8 Symmetric group of permutation based substitution boxes. Primarily, parameters of chaotic Chebyshev map are chosen as a secret key to mystify the primary image. Then, the plaintext image is encrypted by the method generated from the substitution boxes and Chebyshev map. By this process, we can get a cipher text image that is perfectly twisted and dispersed. The outcomes of renowned experiments, key sensitivity tests and statistical analysis confirm that the proposed algorithm offers a safe and efficient approach for real-time image encryption.


Asunto(s)
Algoritmos , Seguridad Computacional , Procesamiento de Imagen Asistido por Computador/métodos , Temperatura , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA