Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Med (Lausanne) ; 11: 1380405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741771

RESUMEN

Introduction: Non-melanoma skin cancer comprising Basal cell carcinoma (BCC), Squamous cell carcinoma (SCC), and Intraepidermal carcinoma (IEC) has the highest incidence rate among skin cancers. Intelligent decision support systems may address the issue of the limited number of subject experts and help in mitigating the parity of health services between urban centers and remote areas. Method: In this research, we propose a transformer-based model for the segmentation of histopathology images not only into inflammation and cancers such as BCC, SCC, and IEC but also to identify skin tissues and boundaries that are important in decision-making. Accurate segmentation of these tissue types will eventually lead to accurate detection and classification of non-melanoma skin cancer. The segmentation according to tissue types and their visual representation before classification enhances the trust of pathologists and doctors being relatable to how most pathologists approach this problem. The visualization of the confidence of the model in its prediction through uncertainty maps is also what distinguishes this study from most deep learning methods. Results: The evaluation of proposed system is carried out using publicly available dataset. The application of our proposed segmentation system demonstrated good performance with an F1 score of 0.908, mean intersection over union (mIoU) of 0.653, and average accuracy of 83.1%, advocating that the system can be used as a decision support system successfully and has the potential of subsequently maturing into a fully automated system. Discussion: This study is an attempt to automate the segmentation of the most occurring non-melanoma skin cancer using a transformer-based deep learning technique applied to histopathology skin images. Highly accurate segmentation and visual representation of histopathology images according to tissue types by the proposed system implies that the system can be used for skin-related routine pathology tasks including cancer and other anomaly detection, their classification, and measurement of surgical margins in the case of cancer cases.

2.
Diagnostics (Basel) ; 14(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38337771

RESUMEN

Ischemic heart condition is one of the most prevalent causes of death that can be treated more effectively and lead to fewer fatalities if identified early. Heart muscle fibrosis affects the diastolic and systolic function of the heart and is linked to unfavorable cardiovascular outcomes. Cardiac magnetic resonance (CMR) scarring, a risk factor for ischemic heart disease, may be accurately identified by magnetic resonance imaging (MRI) to recognize fibrosis. In the past few decades, numerous methods based on MRI have been employed to identify and categorize cardiac fibrosis. Because they increase the therapeutic advantages and the likelihood that patients will survive, developing these approaches is essential and has significant medical benefits. A brand-new method that uses MRI has been suggested to help with diagnosing. Advances in deep learning (DL) networks contribute to the early and accurate diagnosis of heart muscle fibrosis. This study introduces a new deep network known as FibrosisNet, which detects and classifies fibrosis if it is present. It includes some of 17 various series layers to achieve the fibrosis detection target. The introduced classification system is trained and evaluated for the best performance results. In addition, deep transfer-learning models are applied to the different famous convolution neural networks to find fibrosis detection architectures. The FibrosisNet architecture achieves an accuracy of 96.05%, a sensitivity of 97.56%, and an F1-Score of 96.54%. The experimental results show that FibrosisNet has numerous benefits and produces higher results than current state-of-the-art methods and other advanced CNN approaches.

3.
Sci Rep ; 14(1): 851, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191606

RESUMEN

The proposed AI-based diagnostic system aims to predict the respiratory support required for COVID-19 patients by analyzing the correlation between COVID-19 lesions and the level of respiratory support provided to the patients. Computed tomography (CT) imaging will be used to analyze the three levels of respiratory support received by the patient: Level 0 (minimum support), Level 1 (non-invasive support such as soft oxygen), and Level 2 (invasive support such as mechanical ventilation). The system will begin by segmenting the COVID-19 lesions from the CT images and creating an appearance model for each lesion using a 2D, rotation-invariant, Markov-Gibbs random field (MGRF) model. Three MGRF-based models will be created, one for each level of respiratory support. This suggests that the system will be able to differentiate between different levels of severity in COVID-19 patients. The system will decide for each patient using a neural network-based fusion system, which combines the estimates of the Gibbs energy from the three MGRF-based models. The proposed system were assessed using 307 COVID-19-infected patients, achieving an accuracy of [Formula: see text], a sensitivity of [Formula: see text], and a specificity of [Formula: see text], indicating a high level of prediction accuracy.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Redes Neurales de la Computación , Oxígeno , Pacientes
4.
Sci Rep ; 14(1): 2434, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287062

RESUMEN

The increase in eye disorders among older individuals has raised concerns, necessitating early detection through regular eye examinations. Age-related macular degeneration (AMD), a prevalent condition in individuals over 45, is a leading cause of vision impairment in the elderly. This paper presents a comprehensive computer-aided diagnosis (CAD) framework to categorize fundus images into geographic atrophy (GA), intermediate AMD, normal, and wet AMD categories. This is crucial for early detection and precise diagnosis of age-related macular degeneration (AMD), enabling timely intervention and personalized treatment strategies. We have developed a novel system that extracts both local and global appearance markers from fundus images. These markers are obtained from the entire retina and iso-regions aligned with the optical disc. Applying weighted majority voting on the best classifiers improves performance, resulting in an accuracy of 96.85%, sensitivity of 93.72%, specificity of 97.89%, precision of 93.86%, F1 of 93.72%, ROC of 95.85%, balanced accuracy of 95.81%, and weighted sum of 95.38%. This system not only achieves high accuracy but also provides a detailed assessment of the severity of each retinal region. This approach ensures that the final diagnosis aligns with the physician's understanding of AMD, aiding them in ongoing treatment and follow-up for AMD patients.


Asunto(s)
Atrofia Geográfica , Degeneración Macular Húmeda , Humanos , Anciano , Fondo de Ojo , Retina , Degeneración Macular Húmeda/diagnóstico , Atrofia Geográfica/diagnóstico por imagen , Aprendizaje Automático
5.
Math Biosci Eng ; 20(9): 17018-17036, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37920045

RESUMEN

Sleep plays an important role in neonatal brain and physical development, making its detection and characterization important for assessing early-stage development. In this study, we propose an automatic and computationally efficient algorithm to detect neonatal quiet sleep (QS) using a convolutional neural network (CNN). Our study used 38-hours of electroencephalography (EEG) recordings, collected from 19 neonates at Fudan Children's Hospital in Shanghai, China (Approval No. (2020) 22). To train and test the CNN, we extracted 12 prominent time and frequency domain features from 9 bipolar EEG channels. The CNN architecture comprised two convolutional layers with pooling and rectified linear unit (ReLU) activation. Additionally, a smoothing filter was applied to hold the sleep stage for 3 minutes. Through performance testing, our proposed method achieved impressive results, with 94.07% accuracy, 89.70% sensitivity, 94.40% specificity, 79.82% F1-score and a 0.74 kappa coefficient when compared to human expert annotations. A notable advantage of our approach is its computational efficiency, with the entire training and testing process requiring only 7.97 seconds. The proposed algorithm has been validated using leave one subject out (LOSO) validation, which demonstrates its consistent performance across a diverse range of neonates. Our findings highlight the potential of our algorithm for real-time neonatal sleep stage classification, offering a fast and cost-effective solution. This research opens avenues for further investigations in early-stage development monitoring and the assessment of neonatal health.


Asunto(s)
Redes Neurales de la Computación , Sueño , Recién Nacido , Niño , Humanos , China , Fases del Sueño/fisiología , Algoritmos , Electroencefalografía
6.
PeerJ Comput Sci ; 9: e1492, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810364

RESUMEN

Background: Malware, malicious software, is the major security concern of the digital realm. Conventional cyber-security solutions are challenged by sophisticated malicious behaviors. Currently, an overlap between malicious and legitimate behaviors causes more difficulties in characterizing those behaviors as malicious or legitimate activities. For instance, evasive malware often mimics legitimate behaviors, and evasion techniques are utilized by legitimate and malicious software. Problem: Most of the existing solutions use the traditional term of frequency-inverse document frequency (TF-IDF) technique or its concept to represent malware behaviors. However, the traditional TF-IDF and the developed techniques represent the features, especially the shared ones, inaccurately because those techniques calculate a weight for each feature without considering its distribution in each class; instead, the generated weight is generated based on the distribution of the feature among all the documents. Such presumption can reduce the meaning of those features, and when those features are used to classify malware, they lead to a high false alarms. Method: This study proposes a Kullback-Liebler Divergence-based Term Frequency-Probability Class Distribution (KLD-based TF-PCD) algorithm to represent the extracted features based on the differences between the probability distributions of the terms in malware and benign classes. Unlike the existing solution, the proposed algorithm increases the weights of the important features by using the Kullback-Liebler Divergence tool to measure the differences between their probability distributions in malware and benign classes. Results: The experimental results show that the proposed KLD-based TF-PCD algorithm achieved an accuracy of 0.972, the false positive rate of 0.037, and the F-measure of 0.978. Such results were significant compared to the related work studies. Thus, the proposed KLD-based TF-PCD algorithm contributes to improving the security of cyberspace. Conclusion: New meaningful characteristics have been added by the proposed algorithm to promote the learned knowledge of the classifiers, and thus increase their ability to classify malicious behaviors accurately.

7.
Sensors (Basel) ; 23(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37571732

RESUMEN

In order for a country's economy to grow, agricultural development is essential. Plant diseases, however, severely hamper crop growth rate and quality. In the absence of domain experts and with low contrast information, accurate identification of these diseases is very challenging and time-consuming. This leads to an agricultural management system in need of a method for automatically detecting disease at an early stage. As a consequence of dimensionality reduction, CNN-based models use pooling layers, which results in the loss of vital information, including the precise location of the most prominent features. In response to these challenges, we propose a fine-tuned technique, GreenViT, for detecting plant infections and diseases based on Vision Transformers (ViTs). Similar to word embedding, we divide the input image into smaller blocks or patches and feed these to the ViT sequentially. Our approach leverages the strengths of ViTs in order to overcome the problems associated with CNN-based models. Experiments on widely used benchmark datasets were conducted to evaluate the proposed GreenViT performance. Based on the obtained experimental outcomes, the proposed technique outperforms state-of-the-art (SOTA) CNN models for detecting plant diseases.

8.
Nanomicro Lett ; 15(1): 209, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650939

RESUMEN

Zinc-bromine rechargeable batteries (ZBRBs) are one of the most powerful candidates for next-generation energy storage due to their potentially lower material cost, deep discharge capability, non-flammable electrolytes, relatively long lifetime and good reversibility. However, many opportunities remain to improve the efficiency and stability of these batteries for long-life operation. Here, we discuss the device configurations, working mechanisms and performance evaluation of ZBRBs. Both non-flow (static) and flow-type cells are highlighted in detail in this review. The fundamental electrochemical aspects, including the key challenges and promising solutions, are discussed, with particular attention paid to zinc and bromine half-cells, as their performance plays a critical role in determining the electrochemical performance of the battery system. The following sections examine the key performance metrics of ZBRBs and assessment methods using various ex situ and in situ/operando techniques. The review concludes with insights into future developments and prospects for high-performance ZBRBs.

9.
Bioengineering (Basel) ; 10(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37508782

RESUMEN

The dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) technique has taken on a significant and increasing role in diagnostic procedures and treatments for patients who suffer from chronic kidney disease. Careful segmentation of kidneys from DCE-MRI scans is an essential early step towards the evaluation of kidney function. Recently, deep convolutional neural networks have increased in popularity in medical image segmentation. To this end, in this paper, we propose a new and fully automated two-phase approach that integrates convolutional neural networks and level set methods to delimit kidneys in DCE-MRI scans. We first develop two convolutional neural networks that rely on the U-Net structure (UNT) to predict a kidney probability map for DCE-MRI scans. Then, to leverage the segmentation performance, the pixel-wise kidney probability map predicted from the deep model is exploited with the shape prior information in a level set method to guide the contour evolution towards the target kidney. Real DCE-MRI datasets of 45 subjects are used for training, validating, and testing the proposed approach. The valuation results demonstrate the high performance of the two-phase approach, achieving a Dice similarity coefficient of 0.95 ± 0.02 and intersection over union of 0.91 ± 0.03, and 1.54 ± 1.6 considering a 95% Hausdorff distance. Our intensive experiments confirm the potential and effectiveness of that approach over both UNT models and numerous recent level set-based methods.

10.
Diagnostics (Basel) ; 13(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37443625

RESUMEN

Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.

11.
Elife ; 122023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37347149

RESUMEN

Somatostatin interneurons are the earliest born population of cortical inhibitory cells. They are crucial to support normal brain development and function; however, the mechanisms underlying their integration into nascent cortical circuitry are not well understood. In this study, we begin by demonstrating that the maturation of somatostatin interneurons in mouse somatosensory cortex is activity dependent. We then investigated the relationship between activity, alternative splicing, and synapse formation within this population. Specifically, we discovered that the Nova family of RNA-binding proteins are activity-dependent and are essential for the maturation of somatostatin interneurons, as well as their afferent and efferent connectivity. Within this population, Nova2 preferentially mediates the alternative splicing of genes required for axonal formation and synaptic function independently from its effect on gene expression. Hence, our work demonstrates that the Nova family of proteins through alternative splicing are centrally involved in coupling developmental neuronal activity to cortical circuit formation.


Asunto(s)
Empalme Alternativo , Interneuronas , Ratones , Animales , Interneuronas/fisiología , Neuronas/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Somatostatina/metabolismo
12.
Sci Rep ; 13(1): 9590, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311794

RESUMEN

Age-related Macular Degeneration (AMD), a retinal disease that affects the macula, can be caused by aging abnormalities in number of different cells and tissues in the retina, retinal pigment epithelium, and choroid, leading to vision loss. An advanced form of AMD, called exudative or wet AMD, is characterized by the ingrowth of abnormal blood vessels beneath or into the macula itself. The diagnosis is confirmed by either fundus auto-fluorescence imaging or optical coherence tomography (OCT) supplemented by fluorescein angiography or OCT angiography without dye. Fluorescein angiography, the gold standard diagnostic procedure for AMD, involves invasive injections of fluorescent dye to highlight retinal vasculature. Meanwhile, patients can be exposed to life-threatening allergic reactions and other risks. This study proposes a scale-adaptive auto-encoder-based model integrated with a deep learning model that can detect AMD early by automatically analyzing the texture patterns in color fundus imaging and correlating them to the vasculature activity in the retina. Moreover, the proposed model can automatically distinguish between AMD grades assisting in early diagnosis and thus allowing for earlier treatment of the patient's condition, slowing the disease and minimizing its severity. Our model features two main blocks, the first is an auto-encoder-based network for scale adaption, and the second is a convolutional neural network (CNN) classification network. Based on a conducted set of experiments, the proposed model achieves higher diagnostic accuracy compared to other models with accuracy, sensitivity, and specificity that reach 96.2%, 96.2%, and 99%, respectively.


Asunto(s)
Mácula Lútea , Degeneración Macular Húmeda , Humanos , Angiografía con Fluoresceína , Fondo de Ojo , Retina/diagnóstico por imagen
13.
Nucleic Acids Res ; 51(W1): W180-W190, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216602

RESUMEN

Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task. In this study, we present FLUXestimator, an online platform for predicting metabolic fluxome and variations using single cell or general transcriptomics data of large sample-size. The FLUXestimator webserver implements a recently developed unsupervised approach called single cell flux estimation analysis (scFEA), which uses a new neural network architecture to estimate reaction rates from transcriptomics data. To the best of our knowledge, FLUXestimator is the first web-based tool dedicated to predicting cell-/sample-wise metabolic flux and metabolite variations using transcriptomics data of human, mouse and 15 other common experimental organisms. The FLUXestimator webserver is available at http://scFLUX.org/, and stand-alone tools for local use are available at https://github.com/changwn/scFEA. Our tool provides a new avenue for studying metabolic heterogeneity in diseases and has the potential to facilitate the development of new therapeutic strategies.


Asunto(s)
Programas Informáticos , Transcriptoma , Animales , Humanos , Ratones , Redes y Vías Metabólicas , Metabolómica , Modelos Biológicos
14.
Biomedicines ; 11(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979828

RESUMEN

Hypertension is a severe and highly prevalent disease. It is considered a leading contributor to mortality worldwide. Diagnosis guidelines for hypertension use systolic and diastolic blood pressure (BP) together. Mean arterial pressure (MAP), which refers to the average of the arterial blood pressure through a single cardiac cycle, can be an alternative index that may capture the overall exposure of the person to a heightened pressure. A clinical hypothesis, however, suggests that in patients over 50 years old in age, systolic BP may be more predictive of adverse events, while in patients under 50 years old, diastolic BP may be slightly more predictive. In this study, we investigated the correlation between cerebrovascular changes, (impacted by hypertension), and MAP, systolic BP, and diastolic BP separately. Several experiments were conducted using real and synthetic magnetic resonance angiography (MRA) data, along with corresponding BP measurements. Each experiment employs the following methodology: First, MRA data were processed to remove noise, bias, or inhomogeneity. Second, the cerebrovasculature was delineated for MRA subjects using a 3D adaptive region growing connected components algorithm. Third, vascular features (changes in blood vessel's diameters and tortuosity) that describe cerebrovascular alterations that occur prior to and during the development of hypertension were extracted. Finally, feature vectors were constructed, and data were classified using different classifiers, such as SVM, KNN, linear discriminant, and logistic regression, into either normotensives or hypertensives according to the cerebral vascular alterations and the BP measurements. The initial results showed that MAP would be more beneficial and accurate in identifying the cerebrovascular impact of hypertension (accuracy up to 95.2%) than just using either systolic BP (accuracy up to 89.3%) or diastolic BP (accuracy up to 88.9%). This result emphasizes the pathophysiological significance of MAP and supports prior views that this simple measure may be a superior index for the definition of hypertension and research on hypertension.

15.
Exploration (Beijing) ; 3(6): 20220073, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38264684

RESUMEN

Zinc-bromine flow batteries (ZBFBs) are promising candidates for the large-scale stationary energy storage application due to their inherent scalability and flexibility, low cost, green, and environmentally friendly characteristics. ZBFBs have been commercially available for several years in both grid scale and residential energy storage applications. Nevertheless, their continued development still presents challenges associated with electrodes, separators, electrolyte, as well as their operational chemistry. Therefore, rational design of these components in ZBFBs is of utmost importance to further improve the overall device performance. In this review, the focus is on the scientific understanding of the fundamental electrochemistry and functional components of ZBFBs, with an emphasis on the technical challenges of reaction chemistry, development of functional materials, and their application in ZBFBs. Current limitations of ZBFBs with future research directions in the development of high performance ZBFBs are suggested.

16.
Cureus ; 15(12): e51176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38283471

RESUMEN

Keratoacanthoma (KA) is a pruritic, rapidly growing cutaneous neoplasm originating from the infundibulum of the hair follicle on the sun-exposed area. Usually presents as a dome-shape with a centralized keratinous plug. Whether KA is benign or malignant is challenging due to its similarity to squamous cell carcinoma (SCC). In this case study, we present a 57-year-old patient who came to the surgery clinic with a rapidly growing ellipse-shaped nodule on her scalp for two years, which was diagnosed and treated as solitary KA by excisional biopsy. This case represents the first reported KA on the scalp of an elderly patient in Saudi Arabia.

17.
Diagnostics (Basel) ; 12(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36553091

RESUMEN

Diabetic Retinopathy affects one-third of all diabetic patients and may cause vision impairment. It has four stages of progression, i.e., mild non-proliferative, moderate non-proliferative, severe non-proliferative and proliferative Diabetic Retinopathy. The disease has no noticeable symptoms at early stages and may lead to chronic destruction, thus causing permanent blindness if not detected at an early stage. The proposed research provides deep learning frameworks for autonomous detection of Diabetic Retinopathy at an early stage using fundus images. The first framework consists of cascaded neural networks, spanned in three layers where each layer classifies data into two classes, one is the desired stage and the other output is passed to another classifier until the input image is classified as one of the stages. The second framework takes normalized, HSV and RGB fundus images as input to three Convolutional Neural Networks, and the resultant probabilistic vectors are averaged together to obtain the final output of the input image. Third framework used the Long Short Term Memory Module in CNN to emphasize the network in remembering information over a long time span. Proposed frameworks were tested and compared on the large-scale Kaggle fundus image dataset EYEPAC. The evaluations have shown that the second framework outperformed others and achieved an accuracy of 78.06% and 83.78% without and with augmentation, respectively.

18.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497378

RESUMEN

In this work, we introduced an automated diagnostic system for Gleason system grading and grade groups (GG) classification using whole slide images (WSIs) of digitized prostate biopsy specimens (PBSs). Our system first classifies the Gleason pattern (GP) from PBSs and then identifies the Gleason score (GS) and GG. We developed a comprehensive DL-based approach to develop a grading pipeline system for the digitized PBSs and consider GP as a classification problem (not segmentation) compared to current research studies (deals with as a segmentation problem). A multilevel binary classification was implemented to enhance the segmentation accuracy for GP. Also, we created three levels of analysis (pyramidal levels) to extract different types of features. Each level has four shallow binary CNN to classify five GP labels. A majority fusion is applied for each pixel that has a total of 39 labeled images to create the final output for GP. The proposed framework is trained, validated, and tested on 3080 WSIs of PBS. The overall diagnostic accuracy for each CNN is evaluated using several metrics: precision (PR), recall (RE), and accuracy, which are documented by the confusion matrices.The results proved our system's potential for classifying all five GP and, thus, GG. The overall accuracy for the GG is evaluated using two metrics, PR and RE. The grade GG results are between 50% to 92% for RE and 50% to 92% for PR. Also, a comparison between our CNN architecture and the standard CNN (ResNet50) highlights our system's advantage. Finally, our deep-learning system achieved an agreement with the consensus grade groups.

19.
Comput Biol Med ; 151(Pt A): 106222, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343406

RESUMEN

The high precedence of epidemiological examination of skin lesions necessitated the well-performing efficient classification and segmentation models. In the past two decades, various algorithms, especially machine/deep learning-based methods, replicated the classical visual examination to accomplish the above-mentioned tasks. These automated streams of models demand evident lesions with less background and noise affecting the region of interest. However, even after the proposal of these advanced techniques, there are gaps in achieving the efficacy of matter. Recently, many preprocessors proposed to enhance the contrast of lesions, which further aided the skin lesion segmentation and classification tasks. Metaheuristics are the methods used to support the search space optimisation problems. We propose a novel Hybrid Metaheuristic Differential Evolution-Bat Algorithm (DE-BA), which estimates parameters used in the brightness preserving contrast stretching transformation function. For extensive experimentation we tested our proposed algorithm on various publicly available databases like ISIC 2016, 2017, 2018 and PH2, and validated the proposed model with some state-of-the-art already existing segmentation models. The tabular and visual comparison of the results concluded that DE-BA as a preprocessor positively enhances the segmentation results.


Asunto(s)
Melanoma , Enfermedades de la Piel , Neoplasias Cutáneas , Humanos , Dermoscopía/métodos , Melanoma/diagnóstico , Neoplasias Cutáneas/diagnóstico , Heurística , Algoritmos , Enfermedades de la Piel/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
20.
Bioengineering (Basel) ; 9(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36354565

RESUMEN

The segmentation of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) of the kidney is a fundamental step in the early and noninvasive detection of acute renal allograft rejection. In this paper, a new and accurate DCE­MRI kidney segmentation method is proposed. In this method, fuzzy c-means (FCM) clustering is embedded into a level set method, with the fuzzy memberships being iteratively updated during the level set contour evolution. Moreover, population­based shape (PB-shape) and subject-specific shape (SS-shape) statistics are both exploited. The PB-shape model is trained offline from ground-truth kidney segmentations of various subjects, whereas the SS-shape model is trained on the fly using the segmentation results that are obtained for a specific subject. The proposed method was evaluated on the real medical datasets of 45 subjects and reports a Dice similarity coefficient (DSC) of 0.953 ± 0.018, an intersection-over-union (IoU) of 0.91 ± 0.033, and 1.10 ± 1.4 in the 95-percentile of Hausdorff distance (HD95). Extensive experiments confirm the superiority of the proposed method over several state-of-the-art level set methods, with an average improvement of 0.7 in terms of HD95. It also offers an HD95 improvement of 9.5 and 3.8 over two deep neural networks based on the U-Net architecture. The accuracy improvements have been experimentally found to be more prominent on low-contrast and noisy images.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...