Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-16, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668009

RESUMEN

The chikungunya (CHIK) virus is an arbovirus belonging to the alphavirus (Togaviridae family). Around 85% of infected individuals suffer from symptoms such as high fever and severe joint pain; about 30 to 40% will develop a chronic joint illness. The Nsp4 protease is the most conserved protein in the alphavirus family and serves as an RNA-dependent RNA polymerase (RdRp). Targeting this enzyme might inhibit the CHIKV replication cycle. This work aims to in silico study the CHIKV RdRp inhibitory effect of peptides derived from camel milk protein as antiviral peptides. Various bioinformatics tools were recruited to identify, screen, predict and assess peptides obtained from camel milk as antiviral peptides (AVPs). During this study, CHIKV Nsp4 (polymerase) was used as a target to be inhibited by interaction with peptides derived from camel milk protein. Among 91 putative bioactive peptides, the best predicted 5 were further evaluated. Molecular docking showed that the top 5 AVPs generated better docking scores and interacted well with active sites of Nsp4 by the formation of different hydrogen bonds as well as other bonds. AVP63 and AVP20 showed the best Molecular docking and MD simulation results. The residue 315ASP of the GDD motif (catalytic core) exhibited a favorable interaction with the AVPs. The findings of this study suggest that the AVP20 derived from camel milk protein can be a potential novel CHIKV polymerase inhibitor.Communicated by Ramaswamy H. Sarma.

2.
J Epidemiol Glob Health ; 13(2): 191-199, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029884

RESUMEN

BACKGROUND: Chikungunya is an arboviral infection caused by the Chikungunya virus (CHIKV) transmitted to humans by mosquitoes of Aedes spp. CHIKV has been confined to African countries and South-East Asia up to 2004, but since then, the pathogen has become more global, and its high morbidity rate has become more visible. Saudi Arabia is not an endemic region of CHIKV, and the virus's origin is not yet fully understood. This study aimed to characterize the genome of CHIKV from samples detected in Jeddah in 2018. METHOD: Twenty-two sets of primers were designed to amplify near-full length genome of CHIKV. RT-PCR was conducted from clinical samples. Two samples were used for studying near complete genome sequence while the remaining samples were used to study the E1 gene. Different bioinformatics tools were utilized. RESULTS: Phylogenetic analysis showed that the CHIKV strains clustered with strains isolated from Kenya during 2017-2018 and belonged to ECSA genotype. E1: L136F, K211E and I317V mutations were identified in our strains. Also, E2: M74I, A76T, and V264A mutations were documented. Additionally, the capsid N79S substitution was also detected. CONCLUSION: The genome of CHIKV was analyzed for the first time in Saudi Arabia to better understand the origin of the CHIKV and its genetic diversity, which showed high similarity with IE-a subclade of CHIKV strains detected in Mombasa (Kenya) indicating its possible origin.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Humanos , Virus Chikungunya/genética , Filogenia , Arabia Saudita/epidemiología , Kenia , Fiebre Chikungunya/epidemiología , Brotes de Enfermedades , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...