Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 262: 112720, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39243420

RESUMEN

This study investigated the effectiveness and safety of a hybrid thiosemicarbazone ligand (HL) and its metal complexes (MnII-L, FeIII-L, NiII-HL, and ZnII-HL) against epidermoid carcinoma (A-431). The results indicated that FeIII-L is the most effective, with a high selectivity index of 8.01 and an IC50 of 17.49 ± 2.12 µM for FeIII-L. The study also revealed that the synthesized complexes effectively inhibited gene expression of the Phosphoinositide 3-kinases (PI3K), alpha serine/threonine-protein kinase (AKT1), epidermal growth factor receptor (EGFR2) axis mechanism (P < 0.0001). Additionally, these complexes trigger a chain of events that include the inhibition of proliferating cell nuclear antigen (PCNA), transforming growth factor ß1 (TGF ß1), and topoisomerase II, and leading to a decrease in epidermoid cell proliferation. Furthermore, the inhibitory activity also resulted in the upregulation of caspases 3 and 9, indicating the acceleration of apoptotic markers, and the down regulation of miRNA221, suggesting a decrease in epidermoid proliferation. Molecular modeling of FeIII-L revealed that it had the best binding energy -8.02 kcal/mol and interacted with five hydrophobic π-interactions with Val270, Gln79, Leu210, and Trp80 against AKT1. Furthermore, the binding orientation of FeIII-L with Topoisomerase II was found to be the most stable, with a binding energy -8.25 kcal/mol. This stability was attributed to the presence of five hydrophobic π-interactions with His759, Guanin13, Cytosin8, and Ala465, and numerous ionic interactions, which were more favorable than those of doxorubicin and etoposide for new regimens of chemotherapeutic activities against skin cancer.

3.
RSC Adv ; 14(39): 28555-28568, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39247509

RESUMEN

Recently, molecular hybrids of two or more active pharmacophores have shown promise for designing and synthesizing anticancer drugs. Herein, a new multifunctional hybrid (PAHMQ), combining azobenzene and quinoline pharmacophores, and its M(ii) complexes (MPAHMQ) have been successfully developed and structurally characterized. The MTT assay revealed CuBHTP as the most efficient and safe breast cancer treatment, with an IC50 of 11.18 ± 0.39 µg mL-1 and a high selectivity index (SI) of 5.63 for cancer MCF-7 cells over healthy MCF10A cells. Moreover, the CuPAHMQ-treated MCF-7 cells experience a dramatic impact with regard to key apoptotic markers, including an increase in P53 and Bax expression, with a decrease in Bcl-2 expression levels compared to the untreated MCF-7 cells. Additionally, CuPAHMQ effectively halted the growth and division of MCF-7 cells by inducing cell cycle arrest in the crucial G1 and S phases, ultimately inhibiting both Topo II activity and cell proliferation. Molecular docking investigations validated the CuPAHMQ complex's groove binding and topoisomerase II binding, establishing it as a potent anticancer drug.

4.
Artif Cells Nanomed Biotechnol ; 52(1): 411-425, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39193730

RESUMEN

This study uses the aerial parts of Panicum maximum total extract (PMTE) to synthesize silver nanoparticles (AgNPs) in an environmentally friendly manner. TEM, SEM, FTIR, X-ray powder diffraction (XRD), Zeta potential, UV, and FTIR were used to characterize the green silver nanoparticles (PM-AgNPs). PM-AgNPs were evaluated as anticancer agents compared to (PMTE) against breast (MCF-7), lung (A549), and ovary adenocarcinoma (SKOV3) human tumour cells. The antibacterial activity of AgNPs was assessed against Staphylococcus aureus isolates. The PM-AgNPs had an absorbance of 418 nm, particle size of 15.18 nm, and zeta potential of -22.4 mV, ensuring the nanosilver's stability. XRD evaluated the crystallography nature of the formed PM-AgNPs. The cytotoxic properties of PM-AgNPs on MCF-7 and SKOV 3 were the strongest, with IC50s of 0.13 ± 0.015 and 3.5 ± 0.5 g/ml, respectively, as compared to A549 (13 ± 3.2 µg/mL). The increase in the apoptotic cells was 97.79 ± 1.61 and 96.6 ± 1.91% for MCF-7 and SKOV3 cell lines, respectively. PM-AgNPs were found to affect the membrane integrity and membrane permeability of 50 and 43.75% of the tested isolates, respectively. Also, PM-AgNPs have recorded a reduction in the biofilm formation of S. aurues. These results suggest using PM-AgNPs to treat breast and ovarian cancers.


Asunto(s)
Antibacterianos , Tecnología Química Verde , Nanopartículas del Metal , Simulación del Acoplamiento Molecular , Plata , Plata/química , Plata/farmacología , Humanos , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Línea Celular Tumoral , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Técnicas de Química Sintética , Células MCF-7
5.
Int J Biol Macromol ; 276(Pt 1): 133616, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009258

RESUMEN

BACKGROUND: Despite cisplatin's long history as a cornerstone in cancer therapy, both acquired chemoresistance and significant impacts on healthy tissues limit its use. Hepatotoxicity is one of its side effects. Adjunct therapies have shown promise in not only attenuating liver damage caused by cisplatin but also in enhancing the efficacy of chemotherapy. In this context, a new quaternary ammonium chitosan Schiff base (QACSB) was synthesized and applied as an encapsulating agent for the in-situ synthesis of QACSB-ZnO nanocomposite. MATERIAL AND METHODS: Thirty male albino rats were classified into Group 1 (control) distilled water, Group 2 (Cisplatin-treated) (12 mg/kg, i.p), and Group 3 (QACSB-ZnO NCs/cisplatin-treated) (150 mg/kg/day QACSB-ZnO NCs, i.p) for 14 days + a single dose of cisplatin. Liver functions, tissue TNF-α, MDA, and GSH were measured as well as histopathological and immunohistochemical studies were performed. RESULTS: The QACSB-ZnO NCs significantly restore liver functions, tissue TNF-α, MDA, and GSH levels (p < 0.001). Histopathological examination showed patchy necrosis in the cisplatin-treated group versus other groups. The QACSB-ZnO NCs showed a weak TGF-ß1 (score = 4) and a moderate Bcl-2 immunohistochemistry expression (score = 6) versus the CP group. CONCLUSIONS: QACSB-ZnO NCs have been shown to protect the liver from cisplatin-induced hepatotoxicity.


Asunto(s)
Quitosano , Cisplatino , Nanocompuestos , Compuestos de Amonio Cuaternario , Bases de Schiff , Óxido de Zinc , Animales , Cisplatino/efectos adversos , Bases de Schiff/química , Bases de Schiff/farmacología , Quitosano/química , Quitosano/farmacología , Ratas , Nanocompuestos/química , Masculino , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Óxido de Zinc/química , Óxido de Zinc/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Glutatión/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Factor de Necrosis Tumoral alfa/metabolismo , Malondialdehído/metabolismo
6.
Med Oncol ; 40(5): 142, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039909

RESUMEN

Tumor-associated macrophages (TAMs) are an important component of the tumor microenvironment (TME) and have been linked to immunosuppression and poor prognosis. TAMs have been shown to be harmful in ovarian cancer (OC), with a positive correlation between their high levels of tumors and poor overall patient survival. These cells are crucial in the progression and chemoresistance of OC. The primary pro-tumoral role of TAMs is the release of cytokines, chemokines, enzymes, and exosomes that directly enhance the invasion potential and chemoresistance of OC by activating their pro-survival signalling pathways. TAMs play a crucial role in the metastasis of OC in the peritoneum and ascities by assisting in spheroid formation and cancer cell adhesion to the metastatic regions. Furthermore, TAMs interact with tumor protein p53 (TP53), exosomes, and other immune cells, such as stem cells and cancer-associated fibroblasts (CAFs) to support the progression and metastasis of OC. In this review we revisit development, functions and interactions of TAMs in the TME of OC patients to highlight and shed light on challenges and excitement down the road.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/metabolismo , Macrófagos , Transducción de Señal , Citocinas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Microambiente Tumoral
7.
Vaccines (Basel) ; 10(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36016167

RESUMEN

The gold-standard approach for diagnosing and confirming Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) infection is reverse transcription-polymerase chain reaction (RT-PCR). This method, however, is inefficient in detecting previous or dormant viral infections. The presence of antigen-specific antibodies is the fingerprint and cardinal sign for diagnosis and determination of exposure to infectious agents including Corona virus disease-2019 (COVID-19). This cross-sectional study examined the presence of SARS-CoV-2 spike-specific immunoglobulin G (IgG) among asymptomatic blood donors in Makkah region. A total of 4368 asymptomatic blood donors were enrolled. They were screened for spike-specific IgG using ELISA and COVID-19 RNA by real-time PCR. COVID-19 IgG was detected among 2248 subjects (51.5%) while COVID-19-RNA was detected among 473 (10.8%) subjects. The IgG frequency was significantly higher among males and non-Saudi residents (p < 0.001 each) with no significant variation in IgG positivity among blood donors with different blood groups. In addition, COVID-19 RNA frequency was significantly higher among donors below 40-years old (p = 0.047, χ2 = 3.95), and non-Saudi residents (p = 0.001, χ2 = 304.5). The COVID-19 IgG levels were significantly higher among the RNA-positive donors (p = 001), and non-Saudi residents (p = 0.041), with no variations with age or blood group (p > 0.05). This study reveals a very high prevalence of COVID-19 IgG and RNA among asymptomatic blood donors in Makkah, Saudi Arabia indicating a high exposure rate of the general population to COVID-19; particularly foreign residents. It sheds light on the spread on COVID-19 among apparently healthy individuals at the beginning of the pandemic and could help in designing various control measures to minimize viral spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA