Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Heliyon ; 10(9): e30674, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765105

RESUMEN

Concrete is the prime source, which fulfils the applications for construction in various forms. The prime roles of concrete industries are reducing material usage, enrichment of compressive strength, and flexural strength of concrete usage. This research focuses on recycling kaolin (mining waste) and silica fume, a great potential material for replacing coarse aggregate gravel stone and fine aggregate sand in conventional concrete as a hybrid. The developed concrete contained 5% nano alumina (Al2O3), 10% of kaolin waste (KW), and 5, 10, and 15% of silica fume (SF), and its behavior like compressive strength, flexural strength, water absorption, and acid attack behavior is studied. The molecular structure of crystalline is analyzed via X-ray diffraction (XRD). The 15% SF blended with 5% alumina and 10% KW cured within 28 and 90 days recorded high compressive and flexural strength (44 ± 1.76 MPa and 4.3 ± 0.17 MPa). XRD pattern proved their alumina, SF, and KW and found that the concrete blended with 5% alumina, 10% KW, and 15 wt% SF(90 days cured concrete) showed low water absorption (3.1 ± 0.12%). The effect of sulfuric acid behavior on weight reduction was 0.78% compared to CC1 (concrete cube without Al2O3, SF, and KW).

2.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701232

RESUMEN

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Asunto(s)
Carbono , Clima , Microplásticos , Nitrógeno , Suelo , Nitrógeno/análisis , Suelo/química , Carbono/análisis , Contaminantes del Suelo/análisis
4.
Water Environ Res ; 96(5): e11033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720414

RESUMEN

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Asunto(s)
Playas , Monitoreo del Ambiente , Sedimentos Geológicos , Microplásticos , India , Microplásticos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Plásticos/química , Plásticos/análisis
6.
Environ Monit Assess ; 196(5): 446, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607495

RESUMEN

The present study reveals toxic metals, proximate composition, and growth conditions in seven fish species, aiding their nutritional importance and conditions. The samples of seven different small indigenous fish species, including Xenentodon cancila, Glossogobious giuris, Pseudambassis ranga, Puntius dorsolis, Mystus vittatus, Dawkinsia filamentosa, and Dawkinsia tambraparaniei, were collected in river Gadananathi, Tamilnadu, India. A total 14 fish samples were analyzed for lead, cadmium, and copper using atomic absorption spectrometry. The standard procedures were used to determine the length-weight and proximate composition of the seven fishes. The findings revealed that the seven fish species had variable amounts of metal buildup. Cu levels were highest in D. tambraparniei gills and lowest in M. vittatus gills and livers; nonetheless, substantial amounts of Cu were found in P. dorsalis livers. In the length-weight correlations of the regression parameters of coefficient value r2, the "a" and "b" values revealed a positive allometric growth rate in all fish species except G. giuris and M. vittatus. However, X. cancila had the highest composition in the proximate analysis, while D. tambraparniei and D. filamentosa had the highest protein content mean value at a significant level (P ≤ 0.05). Overall, discrepancies in nutritional content might be related to species, environmental circumstances, fish age and size, and food availability.


Asunto(s)
Bagres , Cobre , Animales , India , Ríos , Monitoreo del Ambiente , Intoxicación por Metales Pesados
7.
Toxicon ; 243: 107737, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38677379

RESUMEN

Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.


Asunto(s)
Acacia , Insecticidas , Simulación del Acoplamiento Molecular , Aceites Volátiles , Animales , Aceites Volátiles/química , Aceites Volátiles/farmacología , Acacia/química , Insecticidas/química , Insecticidas/toxicidad , Culex/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Mariposas Nocturnas/efectos de los fármacos , Semillas/química
8.
Funct Plant Biol ; 51: FP24034, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38640358

RESUMEN

Transgenic Arabidopsis thaliana (ecotype Columbia) was successfully transformed with the gene fructose-1,6-bisphosphatase (FBPas e) and named as AtFBPase plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6µmol CO2 µmol-1 H2 O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7µmolm-2 s-1 ) compared to wild type plants. This study suggests the vital role of FBPase gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Fructosa/metabolismo , Fotosíntesis/genética , Clorofila/genética , Clorofila/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
9.
Data Brief ; 54: 110378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38660234

RESUMEN

The study was conducted to investigate the effect of green net shade during staggered planting times on growth, biochemical, antioxidant enzymes and vase life of gladiolus cut flowers. The green net shade effectively reduces the internal temperature, particularly during extremely hot planting times. Under the green net shade conditions, high quality morphological and biochemical observations were observed during the months of March and April planting times. These included longer plant height, spike length, a higher number of leaves plant-1, larger leaf area, maximum spike diameter, greater number of florets spike-1, heavier flower diameter, higher fresh and dry weight, elevated photosynthetic rate, and reduced time taken for flowering. Additionally, chlorophyll contents and transpiration rate showed significant increases, while antioxidant enzyme activity (POD and CAT) was recorded at higher levels. This resulted in reduced electrolyte leakage and an extended vase life of the gladiolus cut flowers. Moreover, the application of green net shade conditions during the planting in May and June significantly enhanced the quality characteristics of gladiolus cut flowers. Effectiveness of green net shade is evident in reducing temperature of growing environment, leading to improved growth, alleviate oxidative stress, enhanced quality features and vase life of the gladiolus flowers.

10.
Heliyon ; 10(8): e29818, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681603

RESUMEN

Environmental consciousness motivates scientists to devise an alternative method for producing natural fiber composite materials in order to decrease the demand for synthetic fibers. This study explores the potential of a novel composite material derived from madar fiber-reinforced epoxy with porcelain filler particulates, designed specifically for biomedical instrumentation applications. The primary focus is to assess the material's structural, mechanical, and antibacterial properties. X-ray Diffraction analysis was employed to discern the crystalline nature of the composite, revealing enhanced crystallinity due to the inclusion of porcelain particulates. Fourier-Transform Infrared Spectroscopy confirmed the chemical interactions and bonding mechanisms between madar fiber, epoxy matrix, and porcelain filler. Mechanically, the composite exhibited superior properties when addition of porcelain fillers, maximum results obtain in tensile strength of 51.28 MPa, flexural strength of 54.21 MPa, and impact strength of 0.0155 kJ/m2, making it ideal for robust biomedical applications. Scanning Electron Microscopy provided detailed insights into the morphology and distribution of the reinforcing agents within the epoxy matrix, emphasizing the fibrillated structure of madar fiber and the uniform dispersion of porcelain particulates. Importantly, antibacterial assays demonstrated the composite's potential resistance against common pathogenic bacteria, which is crucial for biomedical instrumentation. Collectively, this research underscores the promising attributes of the madar fiber reinforced epoxy composite with porcelain particulates, suggesting its suitability for advanced biomedical applications.

11.
BMC Plant Biol ; 24(1): 287, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627664

RESUMEN

Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.


Asunto(s)
Antioxidantes , Raphanus , Prolina , Cobalto/farmacología , Estrés Salino , Salinidad
12.
Front Microbiol ; 15: 1376579, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686113

RESUMEN

Background: Plasmodiophora brassicae is an ever-increasing threat to cruciferous crop production worldwide. Aims and methods: This study investigated the impact of pre-soil fumigation with ammonium bicarbonate (N) and lime (NB) to manage clubroot disease in Chinese cabbage through 16S rRNA gene amplification sequencing. Results: We found that soil fumigation with N and NB suppressed disease incidence by reducing the soil acidity and population of P. brassicae in the rhizosphere. Minimum disease incidence and maximum relative control effect of about 74.68 and 66.28% were achieved in greenhouse and field experiments, respectively, under the combined application of ammonium bicarbonate and lime (LNB) as compared with N, NB, and control (GZ). Microbial diversity analysis through Miseq sequencing proved that pre-soil fumigation with N, NB, and LNB clearly manipulated rhizosphere microbial community composition and changed the diversity and structure of rhizosphere microbes compared with GZ. Bacterial phyla such as Proteobacteria, Bacteriodetes, and Acidobacteria and fungal phyla including Olpidiomycota and Ascomycota were most dominant in the rhizosphere of Chinese cabbage plants. Soil fumigation with N and NB significantly reduced the abundance of clubroot pathogen at genus (Plasmodiophora) level compared with GZ, while decreased further under combined application LNB. Microbial co-occurrence network analysis showed a highly connected and complex network and less competition for resources among microbes under combined application LNB. Conclusion: We conclude that for environmentally friendly and sustainable agriculture, soil fumigation with combined ammonium bicarbonate and lime plays a crucial role in mitigating Chinese cabbage clubroot disease by alleviating soil pH, reducing pathogen population, and manipulating the rhizosphere microbiome.

13.
Sci Rep ; 14(1): 6627, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503869

RESUMEN

The reduction in crop productivity due to drought stress, is a major concern in agriculture. Drought stress usually disrupts photosynthesis by triggering oxidative stress and generating reactive oxygen species (ROS). The use of zinc-quantum dot biochar (ZQDB) and proline (Pro) can be effective techniques to overcome this issue. Biochar has the potential to improve the water use efficiency while proline can play an imperative role in minimization of adverse impacts of ROS Proline, functioning as an osmotic protector, efficiently mitigates the adverse effects of heavy metals on plants by maintaining cellular structure, scavenging free radicals, and ensuring the stability of cellular integrity. That's why current study explored the impact of ZQDB and proline on chili growth under drought stress. Four treatments, i.e., control, 0.4%ZQDB, 0.1 mM Pro, and 0.4%ZQDB + Pro, were applied in 4 replications following the complete randomized design. Results exhibited that 0.4%ZQDB + Pro caused an increases in chili plant dry weight (29.28%), plant height (28.12%), fruit length (29.20%), fruit girth (59.81%), and fruit yield (55.78%) over control under drought stress. A significant increment in chlorophyll a (18.97%), chlorophyll b (49.02%), and total chlorophyll (26.67%), compared to control under drought stress, confirmed the effectiveness of 0.4%ZQDB + Pro. Furthermore, improvement in leaves N, P, and K concentration over control validated the efficacy of 0.4%ZQDB + Pro against drought stress. In conclusion, 0.4%ZQDB + Pro can mitigate drought stress in chili. More investigations are suggested to declare 0.4%ZQDB + Pro as promising amendment for mitigation of drought stress in other crops as well under changing climatic situations.


Asunto(s)
Carbón Orgánico , Sequías , Puntos Cuánticos , Clorofila A , Especies Reactivas de Oxígeno , Prolina , Zinc
14.
ACS Omega ; 9(10): 12084-12100, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496968

RESUMEN

Cellulose is the basic component of lignocellulosic biomass (LCB) making it a suitable substrate for bioethanol fermentation. Cellulolytic and ethanologenic bacteria possess cellulases that convert cellulose to glucose, which in turn yields ethanol subsequently. Heterotermes indicola is a subterranean termite that causes destructive damage by consuming wooden structures of infrastructure, LCB products, etc. Prospectively, the study envisioned the screening of cellulolytic and ethanologenic bacteria from the termite gut. Twenty six bacterial strains (H1-H26) based on varied colonial morphologies were isolated. Bacterial cellulolytic activity was tested biochemically. Marked gas production in the form of bubbles (0.1-4 cm) in Durham tubes was observed in H3, H7, H13, H15, H17, H21, and H22. Sugar degradation of all isolates was indicated by pink to maroon color development with the tetrazolium salt. Hallow zones (0.42-11 mm) by Congo red staining was exhibited by all strains except H2, H7, H8, and H19. Among the 26 bacterial isolates, 12 strains were identified as efficient cellulolytic bacteria. CMCase activity and ethanol titer of all isolates varied from 1.30 ± 0.03 (H13) to 1.83 ± 0.01 (H21) umol/mL/min and 2.36 ± 0.01 (H25) to 7.00 ± 0.01 (H21) g/L, respectively. Likewise, isolate H21 exhibited an ethanol yield of 0.40 ± 0.10 g/g with 78.38 ± 2.05% fermentation efficiency. Molecular characterization of four strains, Staphylococcus sp. H13, Acinetobacter baumanni H17, Acinetobacter sp. H21, and Acinetobacter nosocomialis H22, were based on the maximum cellulolytic index and the ethanol yield. H. indicola harbor promising and novel bacteria with a natural cellulolytic tendency for efficient bioconversion of LCB to value-added products. Hence, the selected cellulolytic bacteria can become an excellent addition for use in enzyme purification, composting, and production of biofuel at large.

15.
Environ Res ; 252(Pt 1): 118454, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38387488

RESUMEN

The oncogenic and genetic properties of anthracene, a member of the polycyclic aromatic hydrocarbons (PAHs) family, pose a significant health threat to humans. This study aims to investigate the photocatalytic decomposition of anthracene under various conditions, such as different concentrations of PAHs, varying amounts of NiO (nickel oxide) nanoparticles, and different pH levels under ultraviolet light and sunlight. The synthesized NiO nanoparticles showed surface plasma resonance at 230 and 360 nm, while XRD and SEM analysis confirmed the nanoparticles were cubic crystalline in structure with sizes ranging between 37 and 126 nm. NiO nanoparticles exhibited 79% degradation of pyrene at 2 µg/mL of anthracene within 60 min of treatment. NiO at 10 µg/mL concentration showed significant adsorption of 57%, while the adsorption method worked efficiently (72%) at 5 pH. Photocatalytic degradation was confirmed by isotherm and kinetic studies through monolayer adsorption and pseudo-first-order kinetics. Further, the absorption process was confirmed by performing GC-MS analysis of the NiO nanoparticles. On the other hand, NiO nanoparticles showed antimicrobial activity against Gram negative and Gram-positive bacteria. Therefore, the present work is one of its kind proving the dual application of NiO nanoparticles, which makes them suitable candidates for bioremediation by treating PAHs and killing pathogenic bacteria.

16.
BMC Plant Biol ; 24(1): 35, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38185637

RESUMEN

Salinity stress is a prominent environmental factor that presents obstacles to the growth and development of plants. When the soil contains high salt concentrations, the roots face difficulties in absorbing water, resulting in water deficits within the plant tissues. Consequently, plants may experience inhibited growth, decreased development, and a decline in biomass accumulation. The use of nanoparticles has become a popular amendment in recent times for the alleviation of salinity stress. The study investigated the biological approach for the preparation of Se nanoparticles (NP) and their effect on the growth of wheat plants under saline conditions. The leaf extract of lemon (Citrus limon L.) was used for the green synthesis of selenium nanoparticles (Se-NPs). The synthesized NPs were characterized by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) and were applied foliar in the range of 0.01%, 0.05% and 0.1% on wheat plants. Results showed that 0.1% SeNP alone exhibited a significantly higher yield per plant, biomass per plant, 1000 grains weight, chlorophyll a, chlorophyll b and total chlorophyll over the SS (salt stress) control. A significant decline in MDA and H2O2 also validated the effectiveness of 0.1% SeNP over the SS control.


Asunto(s)
Citrus , Nanopartículas , Selenio , Triticum , Clorofila A , Peróxido de Hidrógeno , Estrés Salino , Agua
17.
Appl Biochem Biotechnol ; 196(3): 1365-1375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37395945

RESUMEN

Colon cancer is the most prevalent cancer and causes the highest cancer-associated mortality in both men and women globally. It has a high incidence and fatality rate, which places a significant burden on the healthcare system. The current work was performed to understand the beneficial roles of nerolidol on the viability and cytotoxic mechanisms in the colon cancer HCT-116 cells. The MTT cytotoxicity assay was done to investigate the effect of nerolidol at different doses (5-100 µM) on the HCT-116 cell viability. The impacts of nerolidol on ROS accumulation and apoptosis were investigated using DCFH-DA, DAPI, and dual staining assays, respectively. The flow cytometry analysis was performed to study the influence of nerolidol on the cell cycle arrest in the HCT-116 cells. The outcomes of the MTT assay demonstrated that nerolidol at different doses (5-100 µM) substantially inhibited the HCT-116 cell viability with an IC50 level of 25 µM. The treatment with nerolidol appreciably boosted the ROS level in the HCT-116 cells. The findings of DAPI and dual staining revealed higher apoptotic incidences in the nerolidol-exposed HCT-116 cells, which supports its ability to stimulate apoptosis. The flow cytometry analysis demonstrated the considerable inhibition in cell cycle at the G0/G1 phase in the nerolidol-exposed HCT-116 cells. Our research showed that nerolidol can inhibit the cell cycle, increase ROS accumulation, and activate apoptosis in HCT-116 cells. In light of this, it may prove to be a potent and salutary candidate to treat colon cancer.


Asunto(s)
Apoptosis , Neoplasias del Colon , Sesquiterpenos , Femenino , Humanos , Células HCT116 , Proliferación Celular , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Puntos de Control del Ciclo Celular , Ciclo Celular
18.
Cell Signal ; 114: 111003, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38048857

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that directs the transcription of genes involved in the promotion of cell survival and proliferation, inflammation, angiogenesis, invasion, and migration. Overactivation of STAT3 is often witnessed in human cancers, thereby making it a good target in oncology. Herein the efficacy of Leonurine (Leo), a bioactive alkaloid present in Herba leonuri, was investigated for its STAT3-inhibitory potential in hepatocellular carcinoma (HCC) cells. Leo downregulated the persistent as well as IL-6-driven activation of STAT3. Leo abrogated the nuclear localization and DNA interacting ability of STAT3. Leo was also found to impart STAT3 inhibition by mitigating the activation of upstream kinases such as JAK1, JAK2, and Src both in constitutive and IL-6 inducible systems. Leo curbed the STAT3-driven luciferase gene expression and the depletion of STAT3 resulted in the reduced responsiveness of HCC cells to Leo. Pervanadate exposure counteracted Leo-induced STAT3 inhibition suggesting the involvement of a protein tyrosine phosphatase. SHP-1 was significantly elevated upon Leo exposure whereas the depletion of SHP-1 was found to revert the effect of Leo on STAT3. Leo induced apoptosis and also significantly potentiated the cytotoxic effect of paclitaxel, doxorubicin, and sorafenib. Leo was found to be non-toxic up to the dose of 10 mg/kg in NCr nude mice. In conclusion, Leo was demonstrated to induce cytotoxicity in HCC cells by mitigating the persistent of activation of STAT3 pathway.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Factor de Transcripción STAT3/metabolismo , Neoplasias Hepáticas/patología , Transducción de Señal , Regulación hacia Arriba , Ratones Desnudos , Interleucina-6/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Apoptosis
20.
Artículo en Inglés | MEDLINE | ID: mdl-38158485

RESUMEN

Urolithiasis or nephrolithiasis is a condition of kidney stone formation and is considered a painful disease of the urinary tract system. In this work, we planned to discover the therapeutic roles of myricetin on the ethylene glycol (EG)-induced nephrolithiasis in rats. The experimental rats were treated with 0.75% of EG through drinking water for 4 weeks to initiate the nephrolithiasis and subsequently treated with 25 and 50 mg/kg of myricetin. The body weight and urine volume were measured regularly. After the sacrification of rats, the samples were collected, and serum and urinary biomarkers such as creatinine, urea, Ca2 + ion, and BUN, OPN, oxalate, and citrate levels were determined using assay kits. These biomarkers, the MDA level and CAT, SOD, and GPx activities, were assessed in the kidney tissue homogenates. The IL-6, IL-1ß, and TNF-α levels were also quantified using respective kits. The histopathological analysis was done on the kidney tissues. Myricetin treatment did not show major changes in the body weight and kidney weight in the EG-induced rats. The treatment with 25 and 50 mg/kg of myricetin considerably reduced the urea, creatinine, BUN, Ca2 + ion, and oxalate and increased the citrate content in serum and urine samples of EG-induced rats. Further, myricetin depleted the inflammatory cytokines and MDA levels and elevated the CAT, SOD, and GPx activities in the renal tissues. The activities of ALT, AST, ALP, GGT, and LDH were also reduced by the myricetin. Furthermore, the myricetin upheld the histoarchitecture of the kidneys. The outcomes of this investigation propose that myricetin is effective in EG-induced urolithiasis probably because of its antioxidant, anti-inflammatory, and renoprotective activities. In addition, further studies are still required to verify the precise therapeutic mechanism of myricetin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...