Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Faraday Discuss ; 244(0): 154-168, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37186144

RESUMEN

Catalyst confinement within microporous media provides the opportunity to site isolate reactive intermediates, enforce intermolecular functionalization chemistry by co-localizing reactive intermediates and substrates in molecular-scale interstices, and harness non-covalent host-guest interactions to achieve selectivities that are complementary to those accessible in solution. As part of an ongoing program to develop synthetically useful nitrogen-atom transfer (NAT) catalysts, we have demonstrated intermolecular benzylic amination of toluene at a Ru2 nitride intermediate confined within the interstices of a Ru2-based metal-organic framework (MOF), Ru3(btc)2X3 (btc = 1,3,5-benzenetricarboxylate, i.e., Ru-HKUST-1 for X = Cl). Nitride confinement within the extended MOF lattice enabled intermolecular C-H functionalization of benzylic C-H bonds in preference to nitride dimerization, which was encountered with soluble molecular analogues. Detailed study of the kinetic isotope effects (KIEs, i.e., kH/kD) of C-H amination, assayed both as intramolecular effects using partially labeled toluene and as intermolecular effects using a mixture of per-labeled and unlabeled toluene, provided evidence for restricted substrate mobility on the time scale of interstitial NAT. Analysis of these KIEs as a function of material mesoporosity provided approximate experimental values for functionalization in the absence of mass transport barriers. Here, we disclose a combined experimental and computational investigation of the mechanism of NAT from a Ru2 nitride to the C-H bond of toluene. Computed kinetic isotope effects for a H-atom abstraction (HAA)/radical rebound (RR) mechanism are in good agreement with experimental data obtained for C-H amination at the rapid diffusion limit. These results provide the first detailed analysis of the mechanism of intermolecular NAT to a C-H bond, bolster the use of KIEs as a probe of confinement effects on NAT within MOF lattices, and provide mechanistic insights unavailable by experiment because rate-determining mass transport obscured the underlying chemical kinetics.

2.
ACS Omega ; 7(49): 45341-45346, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36530259

RESUMEN

A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography.

3.
Inorg Chem ; 61(48): 19049-19057, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36384037

RESUMEN

Nitride complexes have been invoked as catalysts and intermediates in a wide variety of transformations and are noted for their tunable acid/base properties. A density functional theory study is reported herein that maps the basicity of 3d and 4d transition metals that routinely form nitride complexes: V, Cr, Mn, Nb, Mo, Tc, and Ru. Complexes were gathered from the Cambridge Structural Database, and from the free energy of protonation, the pKb(N) of the nitride group was calculated to quantify the impact of metal identity, oxidation state, coordination number, and supporting ligand type upon metal-nitride basicity. In general, the basicity of transition metal nitrides decreases from left to right across the 3d and 4d rows and increases from 3d metals to their 4d congeners. Metal identity and oxidation state primarily determine basicity trends; however, supporting ligand types have a substantial impact on the basicity range for a given metal. Synergism of these factors in determining the overall pKb(N) values is discussed, as are the implications for the catalytic reactivity of metal nitrides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...