Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 150: 49-55, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32114399

RESUMEN

Having a central role in cell wall pectin cross-linking, calcium has been increasingly used as supplement to promote fruit firmness and extended shelf-life. However, the molecular rearrangements associated to increased fruit robustness are still a matter of debate. In this study, mechanical, histochemical and molecular assays were conducted to understand the mechanisms underlying the effects of Ca in fruit physical properties. In a two-year field trial, grapevines were sprayed with exogenous CaCl2 throughout the fruiting season. Results showed an increase in berry Ca concentration at harvest, associated to increased fruit consistency and skin resistance. Scanning electron microscopy showed that fruits from Ca-treated plants had smoother skin surfaces than control fruits, and that microcracks encircling the lenticels were less prominent. Histochemistry assays suggested higher deposition of pectin-like material in skin cell walls in grapes from Ca-treated vines, but no evident modifications in cellulose content were observed. Accordingly, the expression of cellulose synthase family gene CesA3 was not affected by exogenous Ca, while polygalacturonase-encoding genes PG1 and PG2 were downregulated, together with EXP6 belonging to expansin family, and CER9 and CYP15 involved in cuticle biosynthesis. These results suggested that Ca acts by inhibiting pectin degradation and cell wall loosening, while remodeling cuticle structure.


Asunto(s)
Cloruro de Calcio , Frutas , Vitis , Calcio/metabolismo , Cloruro de Calcio/farmacología , Pared Celular/efectos de los fármacos , Frutas/efectos de los fármacos , Frutas/ultraestructura , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Poligalacturonasa/genética , Vitis/efectos de los fármacos
2.
Front Plant Sci ; 10: 438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024602

RESUMEN

Somatic embryogenesis (SE) is an important biotechnological tool for large-scale clonal propagation and for embryogenesis research. Moreover, genetic transformation and cryopreservation procedures in many species rely on efficient SE protocols. We have been studying different aspects related to SE induction and somatic embryo development in tamarillo (Solanum betaceum Cav.), a small tree from the Solanaceae family. Previous proteomic analyses identified a protein (NEP-TC, 26.5 kDa) consistently present in non-embryogenic calluses of tamarillo, but absent in the embryogenic ones. In this work, the role of NEP-TC during SE was assessed by gene expression analysis and immunolocalization. The results obtained demonstrated that NEP-TC is a putative member of the SpoU rRNA methylase family. This protein, present in the cytoplasm and nucleus, is expressed in non-embryogenic cells and not expressed in embryogenic cells. Slightly enhanced SE induction levels in tamarillo plants with NEP-TC down-regulated levels also supports the role of this protein on SE induction. Heterologous expression was used to confirm NEP-TC rRNA methyltransferase activity, with enhanced activity levels when rRNA was used as a substrate. These data relate a putative member of the SpoU methylase family with plant morphogenesis, in particular with SE induction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...