Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 41(4): 1004-1015, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020957

RESUMEN

Manganese (Mn), an essential metal in trace amounts, and chromium (Cr), a nonessential metal to algae, are often found in effluent discharges and may co-occur in contaminated aquatic environments. Therefore, we investigated the effects of Mn and Cr, and their mixtures, on a freshwater Chlorophyceae, Raphidocelis subcapitata, using a multiple endpoint approach. Regarding the single exposure of metals, Mn was 4 times more toxic (median inhibitory concentration at 72 h [IC5072 h ] = 4.02 ± 0.45 µM Mn) than Cr (IC5072 h = 16.42 ± 4.94 µM Cr) for microalgae, considering the effects on the relative growth rate. Moreover, this species was the most sensitive to Mn, according to the species sensitivity distribution curve. Overall, the tested metals did not lead to significant changes in reactive oxygen species production, cellular complexity, and cell relative size but significantly decreased the algal growth and the mean cell chlorophyll a (Chl a) fluorescence at the highest concentrations (3.64-14.56 µM of Mn and 15.36-19.2 µM of Cr). The decreased mean cell Chl a fluorescence indicates an impact on pigment synthesis, which may be related to the observed growth inhibition. In the mixture tests, the reference models concentration addition and independent action were used to analyze the data, and the independent action model was the best fit to describe our results. Therefore, the Mn and Cr mixture was noninteractive, showing additive effects. This is the first study to address the combined toxicity of Mn and Cr regarding freshwater Chlorophyceae. Environ Toxicol Chem 2022;41:1004-1015. © 2022 SETAC.


Asunto(s)
Chlorophyceae , Contaminantes Químicos del Agua , Chlorophyceae/fisiología , Clorofila A , Cromo/toxicidad , Agua Dulce , Manganeso/toxicidad , Metales/toxicidad , Contaminantes Químicos del Agua/análisis
2.
Ecotoxicol Environ Saf ; 182: 109446, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31323523

RESUMEN

Increased use of sugarcane pesticides and their destination to non-target environments in Brazil has generated concerns related to the conservation of more vulnerable groups, such as amphibians. Besides the high skin permeability, tadpoles are constantly restricted to small and ephemeral ponds, where exposure to high concentrations of pesticides in agricultural areas is inevitable. This study evaluated chronic effects caused by sub-lethal concentrations of 2,4-dichlorophenoxyacetic acid herbicide on energy storage, development, respiration rates, swimming performance and avoidance behavior of bullfrog tadpoles (Lithobates catesbeianus). Firstly, we conducted acute toxicity test (96 h) to estipulate sub-lethal concentrations of 2,4-D and evaluate the sensitivity of three tadpoles' species to this herbicide. Results showed that Leptodactylus fuscus presented the lowest LC50 96 h, 28.81 mg/L, followed by Physalaemus nattereri (143.08 mg/L) and L. catesbeianus (574.52 mg/L). Chronic exposure to 2,4-D (125, 250 and 500 µg/L) delayed metamorphosis and inhibited the growth of tadpoles at concentrations of 125 µg/L. Effects on biochemical reserves showed that 2,4-D increased total hepatic lipids in tadpoles, although some individual lipid classes (e.g. free fatty acids and triglycerides) were reduced. Protein and carbohydrates contents were also impaired by 2,4-D, suggesting a disruption on energy metabolism of amphibians by the herbicide. In addition to biochemical changes, respiration rates and swimming speed were also decreased after chronic exposure to 2,4-D, and these responses appeared to be correlated with the changes detected in the basic energy content. Avoidance test indicated that tadpoles of L. catesbeinus avoided the presence of 2,4-D, however they were unable to detect increasing gradients of the contaminant. Our data showed that chronic exposure to 2,4-D impaired biochemical, physiological and behavioral aspects of tadpoles, which may compromise their health and make them more vulnerable to environmental stressors in natural systems.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/toxicidad , Reacción de Prevención/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Herbicidas/toxicidad , Larva/efectos de los fármacos , Frecuencia Respiratoria/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Brasil , Relación Dosis-Respuesta a Droga , Larva/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Rana catesbeiana , Natación , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA