Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Imaging Behav ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38049599

RESUMEN

Nowadays, the limitless availability to the World Wide Web can lead to general Internet misuse and dependence. Currently, smartphone and social media use belong to the most prevalent Internet-related behavioral addiction forms. However, the neurobiological background of these Internet-related behavioral addictions is not sufficiently explored. In this study, these addiction forms were assessed with self-reported questionnaires. Resting-state functional magnetic resonance imaging was acquired for all participants (n = 59, 29 males) to examine functional brain networks. The resting-state networks that were discovered using independent component analysis were analyzed to estimate within network differences. Significant negative associations with social media addiction and smartphone addiction were found in the language network, the lateral visual networks, the auditory network, the sensorimotor network, the executive network and the frontoparietal network. These results suggest that problematic smartphone and social media use are associated with sensory processing and higher cognitive functioning.

2.
J Magn Reson Imaging ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37602529

RESUMEN

BACKGROUND: Although COVID-19 is primarily an acute respiratory infection, 5%-40% of patients develop late and prolonged symptoms with frequent neurological complaints, known as long COVID syndrome. The presentation of the disease suggests that COVID infection may cause functional and/or morphological central nervous system alterations, but studies published in the literature report contradictory findings. PURPOSE: To investigate the chronic effects of COVID-19 on cerebral grey matter in a group of young patients without comorbidities, with mild course of COVID infection and no medical complaints at the time of examination. STUDY TYPE: Prospective. POPULATION: Thirty-eight young (age = 26.6 ± 5.0 years; male/female = 14/24), adult participants who recovered from mild COVID infection without a history of clinical long COVID and 37 healthy control subjects (age = 25.9 ± 2.8 years; male/female = 14/23). FIELD STRENGTH/SEQUENCE: Three Tesla, 3D T1-weighted magnetization-prepared rapid gradient-echo, 2D T2-weighted turbo spin-echo. ASSESSMENT: MRI-based morphometry and volumetry along with neuropsychological testing and self-assessed questionnaire. STATISTICAL TESTS: Fisher's exact test, Mann-Whitney U-test, and multiple linear regression analyses were used to assess differences between COVID and healthy control groups. P < 0.05 was used as cutoff for significance. RESULTS: In the COVID group, significantly lower bilateral mean cortical thickness (left/right-hemisphere: 2.51 ± 0.06 mm vs. 2.56 ± 0.07 mm, η2 p = 0.102/2.50 ± 0.06 mm vs. 2.54 ± 0.07 mm, η2 p = 0.101), lower subcortical gray matter (57881 ± 3998 mm3 vs. 60470 ± 5211 mm3 , η2 p = 0.100) and lower right olfactory bulb volume (52.28 ± 13.55 mm3 vs. 60.98 ± 15.8 mm3 , η2 p = 0.078) were found. In patients with moderate to severe anosmia, cortical thickness was significantly lower bilaterally, as compared to patients without olfactory function loss (left/right-hemisphere: 2.50 ± 0.06 mm vs. 2.56 ± 0.05 mm, η2 = 0.173/2.49 ± 0.06 mm vs. 2.55 ± 0.05 mm, η2 = 0.189). Using further exploratory analysis, significantly reduced cortical thickness was detected locally in the right lateral orbitofrontal cortex in the COVID group (2.53 ± 0.10 mm vs. 2.60 ± 0.09 mm, η2 p = 0.112). DATA CONCLUSION: Even without any subjective or objective neurological complaints at the time of the MR scan, subjects in the COVID group showed gray matter alterations in cortical thickness and subcortical gray matter volume. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

3.
Sci Rep ; 13(1): 354, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611073

RESUMEN

Growing literature indicates that problematic Internet use (PIU) and excessive smartphone use (ESU) are associated with breakdown of functional brain networks. The effects of PIU&ESU on emotional face expression (EFE) recognition are not well understood, however behavioural investigations and fMRI studies of different addiction forms indicated the impairment of this function. The Facial Emotion Recognition Paradigm was used to probe cortico-limbic responses during EFE recognition. Combined fMRI and psychophysiological analysis were implemented to measure EFE-related functional brain changes in PIU&ESU. Self-reported questionnaires were used to assess PIU&ESU. Positive associations were found between the extent of PIU&ESU and functional connections related to emotional cognitive control and social brain networks. Our findings highlight the involvement of social functioning, especially EFE recognition in PIU&ESU. Therefore, we emphasize that besides the brain's executive and reward systems, the social brain network might be the next candidate to be involved in the pathogenesis of PIU&ESU.


Asunto(s)
Conducta Adictiva , Reconocimiento Facial , Humanos , Teléfono Inteligente , Expresión Facial , Imagen por Resonancia Magnética , Uso de Internet , Conducta Adictiva/psicología , Internet
4.
Neuroimage ; 265: 119812, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526104

RESUMEN

Increasing time spent on the task (i.e., the time-on-task (ToT) effect) often results in mental fatigue. Typical effects of ToT are decreasing levels of task-related motivation and the deterioration of cognitive performance. However, a massive body of research indicates that the detrimental effects can be reversed by extrinsic motivators, for example, providing rewards to fatigued participants. Although several attempts have been made to identify brain areas involved in mental fatigue and related reward processing, the neural correlates are still less understood. In this study, we used the psychomotor vigilance task to induce mental fatigue and blood oxygen-level-dependent functional magnetic resonance imaging to investigate the neural correlates of the ToT effect and the reward effect (i.e., providing extra monetary reward after fatigue induction) in a healthy young sample. Our results were interpreted in a recently proposed neurocognitive framework. The activation of the right middle frontal gyrus, right insula and right anterior cingulate gyrus decreased as fatigue emerged and the cognitive performance dropped. However, after providing an extra reward, the cognitive performance, as well as activation of these areas, increased. Moreover, the activation levels of all of the mentioned areas were negatively associated with reaction times. Our results confirm that the middle frontal gyrus, insula and anterior cingulate cortex play crucial roles in cost-benefit evaluations, a potential background mechanism underlying fatigue, as suggested by the neurocognitive framework.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Motivación , Mapeo Encefálico/métodos , Recompensa , Fatiga Mental/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...