Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(5): 230601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076791

RESUMEN

Epilepsy is a life-threatening neurological condition. Manual detection of epileptic seizures (ES) is laborious and burdensome. Machine learning techniques applied to electroencephalography (EEG) signals are widely used for automatic seizure detection. Some key factors are worth considering for the real-world applicability of such systems: (i) continuous EEG data typically has a higher class imbalance; (ii) higher variability across subjects is present in physiological signals such as EEG; and (iii) seizure event detection is more practical than random segment detection. Most prior studies failed to address these crucial factors altogether for seizure detection. In this study, we intend to investigate a generalized cross-subject seizure event detection system using the continuous EEG signals from the CHB-MIT dataset that considers all these overlooked aspects. A 5-second non-overlapping window is used to extract 92 features from 22 EEG channels; however, the most significant 32 features from each channel are used in experimentation. Seizure classification is done using a Random Forest (RF) classifier for segment detection, followed by a post-processing method used for event detection. Adopting all the above-mentioned essential aspects, the proposed event detection system achieved 72.63% and 75.34% sensitivity for subject-wise 5-fold and leave-one-out analyses, respectively. This study presents the real-world scenario for ES event detectors and furthers the understanding of such detection systems.

2.
Plant Dis ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885023

RESUMEN

Dollar spot is a major fungal disease affecting turfgrass worldwide and can quickly destroy turfgrass swards. An assimilating probe-based loop-mediated amplification (LAMP) assay was developed to detect Clarireedia monteithiana and C. jacksonii, the causal agents of dollar spot within the continental US. Five LAMP primers were designed to target the calmodulin gene with the addition of a 6-carboxyl-fluorescein florescent assimilating probe and the temperature amplification was optimized for C. jacksonii and C. monteithiana identification. The minimum amount purified DNA needed for detection was 0.05 ng µL-1. Specificity assays against host DNA and other turfgrass pathogens were negative. Successful LAMP amplification was also observed for dollar spot infected turfgrass field samples. Further, a DNA extraction technique via rapid heat-chill cycles and visualization of LAMP results via a florescent flashlight was developed and adapted for fast, simple and reliable detection in 1.25 hours. This assimilating probe-based LAMP assay has proved successful as a rapid, sensitive, and specific detection of C. monteithiana and C. jacksonii in pure cultures and from symptomatic turfgrass leaves blades. The assay represents a promising technology to be used in the field for on-site, point-of-care pathogen detection.

3.
Plant Dis ; 107(11): 3394-3402, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37018213

RESUMEN

Phytopythium vexans (de Bary) Abad, de Cock, Bala, Robideau, A. M. Lodhi & Levesque is an important waterborne and soil-inhabiting oomycete pathogen causing root and crown rot of various plants including certain woody ornamentals, fruit, and forest trees. Early and accurate detection of Phytopythium in the nursery production system is critical, as this pathogen is quickly transported to neighboring healthy plants through the irrigation system. Conventional methods for the detection of this pathogen are tedious, frequently inconclusive, and costly. Hence, a specific, sensitive, and rapid molecular diagnostic method is required to overcome the limitations of traditional identification. In the current study, loop-mediated isothermal amplification (LAMP) for DNA amplification was developed for the identification of P. vexans. It was evaluated using real-time and colorimetric assays. Several sets of LAMP primers were designed and screened, but PVLSU2 was found to be specific to P. vexans as it did not amplify other closely related oomycetes, fungi, and bacteria. Moreover, the developed assays were sensitive enough to amplify DNA up to 102 fg per reaction. The real-time LAMP assay was more sensitive than traditional PCR and culture-based methods to detect infected plant samples. In addition, both LAMP assays detected as few as 100 zoospores suspended in 100 ml water. These LAMP assays are anticipated to save time in P. vexans detection by disease diagnostic laboratories and research institutions and enable early preparedness in the event of disease outbreaks.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Oomicetos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , ADN
4.
Phytopathology ; 113(6): 921-930, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36401843

RESUMEN

In 1922, Phytophthora capsici was described by Leon Hatching Leonian as a new pathogen infecting pepper (Capsicum annuum), with disease symptoms of root rot, stem and fruit blight, seed rot, and plant wilting and death. Extensive research has been conducted on P. capsici over the last 100 years. This review succinctly describes the salient mile markers of research on P. capsici with current perspectives on the pathogen's distribution, economic importance, epidemiology, genetics and genomics, fungicide resistance, host susceptibility, pathogenicity mechanisms, and management.


Asunto(s)
Capsicum , Fungicidas Industriales , Phytophthora , Phytophthora/genética , Enfermedades de las Plantas
5.
Plant Dis ; 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35306846

RESUMEN

US banana producers are looking for the organic banana market in the southeastern US including Florida and the coastal region of Georgia (Schupska, 2008). In December of 2020, a 6-hand bunched banana (cv. Pisang Awak, belongs to tetraploid AABB genome) with nearly 50% infection (with 15-20% disease severity, <1% of the total harvest) was received from the UGA Banana Research Plot, Tifton, GA with typical stem end rot symptoms of softened and water-soaked flesh. To identify the pathogen, the infected tissues were separated with a sterilized blade, surface disinfested with 10% bleach solution for 1 min, and subsequently washed in three changes of sterile distilled water. The sterilized tissues were aseptically placed on potato dextrose agar (PDA) medium and incubated at 25°C in the dark for 5-10 days. Two isolates of the pathogen with similar colony morphology were obtained and initially identified morphologically using a Botryosphaeriaceae taxonomic key (Phillips et al., 2013). The first growth phase for the isolates documented on PDA, gave rise to white colonies, followed by a dense, black mycelium. The mycelium was fast-spreading, immersed, branched, and septate. The shiny black pycnidia were viewed on the PDA surface after 8-10 days of incubation. Initially, the morphological features of the isolates were identified as Lasiodiplodia spp. (Phillips et al., 2013). To identify to species level, genomic DNA was extracted from two isolates (SW1 & SW2) and amplified by PCR for sequencing using ITS1/ITS4 (White et al., 1990), EF1- 688F/ EF1- 1251R (Alves et al., 2008), Bt2a/Bt2b (Glass & Donaldson, 1995) and rpb2-LasF/ rpb2-LasR (Cruywagen et al., 2017). The ITS (MZ293097 and MZ293114), EF1(OL657173 and OL657174) and rpb2 (OL704860 and OL704861) sequences showed 100% identity and Bt (OL657175 and OL657176) sequences showed 99.5% and 99.7% identity to the corresponding sequences of Lasiodiplodia brasiliensis type strain CMW35884 in GenBank (ITS: KU887094, EF1: KU886972, Bt: KU887466 and rpb2: KU696345). To further affirm the identity, a concatenated phylogenetic analysis was executed with ITS, EF1, Bt, and rpb2 sequences of both isolates and 31 reference strains using Geneious Prime 2019.2.3 Tamura-Nei Neighbor-joining method with 1,000 bootstrap replications, and the outcome was consistent with the conclusion above. To fulfill Koch's postulates, a pathogenicity test was performed with bunched bananas. Two whole bunched bananas surface sterilized with 10% bleach solutions and subsequent washing with sterilized water were cut into 3 bananas per brunch. The inoculum was prepared with 105 spores/ml. The conidial suspension was inoculated on the on-cut surface of the banana crown (300 µl per crown) using a micropipette. Sterile distilled water was applied as a control. The fruit was then packed and sealed in plastic bags and incubated at 25°C. Stem end rot symptoms were first appeared at 5 dpi and increased 7 days later. Two weeks post-inoculation, typical blackened and softened rot tissues were observed, and control fruits remained asymptomatic. To the best of our knowledge, this is the first report of Lasiodiplodia brasiliensis causing stem-end rot of bananas in the USA. This report would be valuable to the banana growers in the southeastern US by taking suitable control measures to confront this fungal disease.

6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1082-1085, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891475

RESUMEN

Physiological signals like Electrocardiography (ECG) and Electroencephalography (EEG) are complex and nonlinear in nature. To retrieve diagnostic information from these, we need the help of nonlinear methods of analysis. Entropy estimation is a very popular approach in the nonlinear category, where entropy estimates are used as features for signal classification and analysis. In this study, we analyze and compare the performances of four entropy methods; namely Distribution entropy (DistEn), Shannon entropy (ShanEn), Renyi entropy (RenEn) and LempelZiv complexity (LempelZiv) as classification features to detect epileptic seizure (ES) from surface Electroencephalography (sEEG) signal. Experiments were conducted on sEEG data from 23 subjects, obtained from the CHB-MIT database of PhysioNet. ShanEn, RenEn and LempelZiv entropy are found to be potential features for accurate and consistent detection of ES from sEEG, across multiple channels and subjects.


Asunto(s)
Algoritmos , Procesamiento de Señales Asistido por Computador , Electroencefalografía , Entropía , Humanos , Convulsiones/diagnóstico
7.
Plant Dis ; 2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34455806

RESUMEN

In southeastern U.S., oat (Avena sativa L.) is predominantly grown as a grain or forage crop due to its exceptional palatability (Buntin et al. 2009). In November 2020, leaf spot symptoms were observed in an oat field (cv. Horizon 720) in Screven County, Georgia (GPS: 32°38'57.6"N 81°31'32.178"W). Lesions were oblong, whitish to gray in color, and surrounded by dark brown borders. Symptomatic oat leaves were sampled from the field and cut into 1 cm2 sections that were surface sterilized, plated onto Potato Dextrose Agar (PDA) media and incubated in the dark at 23°C. To obtain pure cultures, fungal hyphal tips were transferred onto fresh PDA plates 3 times. The pathogen was identified as Pyricularia (Magnaporthe) based on typical conidial morphology (Ellis 1971). Conidia were hyaline, pyriform, 2-septate, and displayed a basal hilum. Conidia measured 5.32 to 10.64 µm (average 8.24 µm) wide by 15.96 to 29.26 µm (average 25.40 µm) long. The identification of Pyricularia was further confirmed genetically via PCR amplification followed by sequencing. Genomic DNA was extracted from a 14-day old pure culture using a CTAB method (Doyle and Doyle 1987). The internal transcribed spacer (ITS) region of ribosomal DNA, calmodulin (CaM) gene, and -tubulin (TUB) gene were amplified using ITS5-ITS4 (White et al. 1990), CMD5-CMD6 (Hong et al. 2005), and Bt2a- Bt2b (Glass and Donaldson 1995) primer sets, respectively. Amplicons were Sanger sequenced and blasted against the NCBI database. Results exhibited 100% (ITS), 100% (CaM), and 99.61% (TUB) homology with Pyricularia oryzae Cavara (GenBank accession no. LC554423.1, CP050920.1, and CP050924.1, respectively). The ITS, CaM, and TUB sequences of the isolate were deposited in GenBank as MZ295207, MZ342893, and MZ342894, respectively. In a greenhouse (23°C, 80% RH), Koch's postulates were carried out by using oat seedlings cv. Horizon 270 grown in Kord sheet pots filled with Sun Gro professional growing mix, and a P. oryzae spore suspension containing 104 conidia ml-1. The spore suspension (10 ml) was sprayed with an air sprayer onto 7 pots of oat seedlings at the two-leaf stage. Seven supplementary pots of oat seedlings of the same cultivar were sprayed with sterile water to act as controls. After inoculation, plants were covered with black plastic bags that had been sprayed with sterile water to maintain high humidity and incubated overnight in the greenhouse. The bags were removed the next day, and plants were evaluated for symptoms in the following days. Seven days after inoculation, plants displayed symptoms similar to those found in the original field sample. Control plants showed no symptoms. Pyricularia oryzae was consistently re-isolated from inoculated symptomatic oat tissues. To our knowledge, this is the first report of gray leaf spot caused by P. oryzae on oat in the state of Georgia and in the continental United States. Pyricularia oryzae can infect several graminaceous plants, including agronomically important crops such as rice (Oryza sativa) and wheat (Triticum spp.) (Chung et al. 2020). Phylogenetic analysis on the ITS region using 6 different host lineages was performed and revealed that this oat isolate was most closely related to the Lolium lineage. This outbreak could have economic implications in oat production.

8.
Plant Dis ; 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34406784

RESUMEN

Podocarpus macrophyllus (Thunb.) D. Don is used in many fields, including landscape, medicine, and forest interplanting. In July 2019, shoot blight was observed on P. macrophyllus at three nurseries in Harbin, China. Approximately 15% of plants had symptoms of the disease, which included rapid, synchronized death of leaves on individual branches. Eventually the whole plant wilted. Leaves and stems turned dark blue to brown. Ten infected vascular tissue samples from 10 individual plants were surface-disinfested in 0.5% NaOCl for 5 min, rinsed 3 times in sterile distilled water, and cultured on potato dextrose agar (PDA) amended with 50 µg/ml streptomycin at 26°C. Six similar fungal isolates from ten samples were isolated and subcultured. Single-conidium isolates were generated with methods reported previously (Leslie and Summerell 2006). Colonies on PDA consisted of densely floccose aerial hyphae with light yellow and pinkish pigments. Microconidia were oval to obovoid or allantoid, 3.8 to 11.8 µm in length and 2.8 to 4.6 µm in width, mostly non-septate on carnation leaf agar (CLA). Macroconidia were naviculate-to-fusiform slender, 24.9 to 57.2 µm in length and 2.8 to 4.5 µm in width with 3- to 5- septate, with a beaked apical cell and a foot-shaped basal cell. According to these morphological characteristics, all isolates were identified as Fusarium spp. (Aoki et al. 2001 ). Genomic DNA was extracted from a representative isolate LHS1. The internal transcribed spacer regions (ITS), translation elongation factor 1-alpha gene (TEF-1ɑ) and ß-tubulin (TUB2) gene were amplified using the primers ITS1 and ITS4 (Yin et al. 2012),EF1-728F/EF1-986R (Carbone and Kohn 1999) and T1/Bt2b (Glass and Donaldson 1995), respectively. DNA sequences of LHS1 were deposited in GenBank (accession nos. MT914496 for ITS, MT920920 for TEF-1ɑ and MT920921 for TUB2, respectively). MegaBLAST analysis of the ITS, TEF-1a, and TUB2 sequences indicated 100%, 97.7% and 100% similarity with Fusarium concentricum isolate CBS 450.97 (accession no. MH862659.1 for ITS, MT010992.1 for TEF-1a, and MT011040.1 for TUB2, respectively). To determine pathogenicity, P. macrophyllus plants were grown in 10-cm pots containing a commercial potting mix (five plants/pot). At the 10 to 12 leaf stage, 10 healthy plants (2 pots) were inoculated by spraying 5 ml of a conidial suspension (4×106 spores/ml) onto every plant. Ten plants treated with sterile distilled water served as a control. The test was repeated twice. All plants were placed in a humidity chamber (>95% RH, 26℃) for 48 h after inoculation and then transferred to a greenhouse at 22/28°C (night/day). All inoculated wilted with leaves and stems turning dark blue to brown 15 days after inoculation. No symptoms were observed on the control plants. The fungus was re-isolated and confirmed to be F. concentricum according to morphological characteristics and molecular identification. To our knowledge, this is the first report of F. concentricum on P. macrophyllus in world. The disease caused a large number of plants to wilt and die, seriously impacting the ability of the horticulture industry to produce P. macrophyllus. Although this pathogen causes leaf and shoot blight symptoms, it is not clear if the pathogen is also a vascular wilt disease. The occurrence of the new disease caused by F. concentricum highlights the importance of developing management strategies to protect P. macrophyllus.

9.
Plant Dis ; 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33728955

RESUMEN

Citrus tristeza virus (CTV) [genus Closterovirus; family Closteroviridae] is one of the most important, economically devastating viruses of citrus worldwide. On citrus trees grafted onto sour orange rootstock, typical CTV symptoms include dieback and defoliation, stunting, curling and chlorotic leaves, stem-pitting, and pinholes below the bud union on the inner face of the bark (Moreno et al. 2008). This single-stranded, positive-sense RNA virus is most efficiently transmitted by the brown citrus aphid (Toxoptera citricida), but it can also be transmitted by other aphid species and through grafting of infected plant material onto healthy plants (Moreno et al 2008; Herron et al. 2006). In Fall 2020, leaf material for virus testing was collected from 13 navel orange trees (Citrus × sinensis) grafted onto Poncirus trifoliata rootstocks (including 'Flying Dragon') located in a citrus research orchard in Tifton, GA. Trees ranged in age from 2 to 10 years, with the younger trees having been grafted from cuttings taken from the older trees. The oldest of these trees was derived from cuttings taken in 2009 from an orange tree growing locally in a residential yard in Tifton; this parent tree was more than 15 years old when these cuttings were obtained and was no longer available for sampling as of 2020. Symptoms or other visible signs of disease had not been noted on any of the tested trees, and trees were chosen for testing prior to the further dissemination of this plant material. The presence of CTV was verified via molecular and serological testing. CTV infection was initially confirmed in 8 of 13 tested samples using the ImmunoStrip® for CTV assay (Agdia® Inc., Elkhart, IN, cat no: ISK 78900/0025) according to the manufacturer's instructions. RNA was extracted from leaf material collected from the 13 sampled trees using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Following cDNA synthesis, samples were tested for the presence of CTV by reverse-transcription PCR using primer pair AR18F (5'-ATGTCAGGCAGCTTGGGAAATT-3') and AR18R (5'-TTCGTGTCTAAGTCRCGCTAAACA-3') which produces a 511 bp amplicon (Roy et al., 2005). PCR reactions confirmed the presence of CTV, with the same eight samples that had previously tested positive via Immunostrip® producing PCR fragments of the expected size. Amplified products from two of these samples were then sequenced using Sanger sequencing (Retrogen Inc, San Diego, CA, USA) and subjected to BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi) for further identification. Sequence analysis revealed that the obtained partial sequences (MW540805) from the p18 gene of both isolates were 100% identical to one another and shared 100% identity to corresponding sequences from CTV strain N4 (MK779711.1). To the best of our knowledge, this is the first report of CTV infecting citrus plants in Georgia. CTV could pose an imminent threat to the emerging citrus industry in Georgia if it were to become established in commercial citrus plantings either via the dissemination of infected plant material or via vector transfer of the virus under field conditions. While the brown citrus aphid is not known to be widespread in Georgia at this time, other CTV vectors are prevalent including the cotton aphid (Aphis gossypii) and the black citrus aphid (T. aurantia). Georgia citrus growers and plant propagators should be aware of this virus and take appropriate control measures to prevent the spread of this viral diseas.

10.
Methods Mol Biol ; 2028: 247-259, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31228119

RESUMEN

RNA silencing is a sequence-specific suppression of gene expression conserved in eukaryotes including fungi, plants, and animals. Based on this mechanism, crop improvements have been made to confer pathogen resistance and abiotic stress tolerance. Here we have applied this technique to produce virus resistant tomato plants using host genes involved in viral replication. Tomato homologs of Arabidopsis TOM1 involved in tobamovirus replication has been isolated and used to construct the plasmids that carried inverted repeats of the genes for induction of RNA silencing. Tomato plants were transformed by the plasmids via Agrobacterium, and tested for virus resistance. Actually, the T2 and T3 plants showed resistance to tomato mosaic virus. Here we describe the method to construct RNA silencing-inducing plasmids, to transform tomato plants and to check the introduction of transgenes and virus resistance.


Asunto(s)
Silenciador del Gen , Interacciones Huésped-Patógeno/genética , Fitomejoramiento , Interferencia de ARN , Replicación Viral/genética , Resistencia a la Enfermedad/genética , Solanum lycopersicum/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Tobamovirus , Transformación Genética
11.
Front Microbiol ; 9: 2472, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30429831

RESUMEN

Penicillium expansum causes blue mold, the most economically important postharvest disease of pome fruit worldwide. Beside sanitation practices, the disease is managed through fungicide applications at harvest. Difenoconazole (DIF) is a new demethylation inhibitor (DMI) fungicide registered recently to manage postharvest diseases of pome fruit. Herein, we evaluated the sensitivity of 130 P. expansum baseline isolates never exposed to DIF and determined the effective concentration (EC50) necessary to inhibit 50% germination, germ tube length, and mycelial growth. The respective mean EC50 values of 0.32, 0.26, and 0.18 µg/ml indicate a high sensitivity of P. expansum baseline isolates to DIF. We also found full and extended control efficacy in vivo after 6 months of storage at 1°C. We conducted a risk assessment for DIF-resistance development using ultraviolet excitation combined with or without DIF-selection pressure to generate and characterize lab mutants. Fifteen DIF-resistant mutants were selected and showed EC50 values of 0.92 to 1.4 µg/ml and 1.7 to 3.8 µg/ml without and with a DIF selection pressure, respectively. Resistance to DIF was stable in vitro over a 10-week period without selection pressure. Alignment of the full CYP51 gene sequences from the three wild-type and 15 mutant isolates revealed a tyrosine to phenylalanine mutation at codon 126 (Y126F) in all of the 15 mutants but not in the wild-type parental isolates. Resistance factors increased 5 to 15-fold in the mutants compared to the wild-type-isolates. DIF-resistant mutants also displayed enhanced CYP51 expression by 2 to 14-fold and was positively correlated with the EC50 values (R 2 = 0.8264). Cross resistance between DIF and fludioxonil, the mixing-partner in the commercial product, was not observed. Our findings suggest P. expansum resistance to DIF is likely to emerge in commercial packinghouse when used frequently. Future studies will determine whether resistance to DIF is qualitative or quantitative which will be determinant in the speed at which resistance will develop and spread in commercial packinghouses and to develop appropriate strategies to extend the lifespan of this new fungicide.

12.
Plant Dis ; 102(3): 533-539, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30673472

RESUMEN

Phacidiopycnis washingtonensis and P. pyri cause speck rot and Phacidiopycnis rot on apple and pear, respectively. Infection occurs in the orchard and remains latent, and symptoms appear after months of storage. Decay management relies on orchard sanitation and pre- and postharvest fungicides. In a 2017 survey, speck rot accounted for 6.4% of apple decay in central Washington, whereas Phacidiopycnis rot accounted for 3.9 and 6.7% of total pear decay in Washington and Oregon, respectively. Sensitivities of baseline populations of 110 P. washingtonensis and 76 P. pyri isolates collected between 2003 and 2005 to preharvest fungicides pyraclostrobin (PYRA) and boscalid (BOSC) and to postharvest fungicides thiabendazole (TBZ), fludioxonil (FDL), pyrimethanil (PYRI), and difenoconazole (DFC) were evaluated using a mycelial growth inhibition assay. Mean effective concentrations necessary to inhibit 50% growth (EC50) of P. washingtonensis were 0.1, 0.3, 0.8, 1.8, 2.1, and 4.8 µg/ml for FDL, PYRI, TBZ, DFC, PYRA, and BOSC, respectively. Respective mean EC50 values for P. pyri were 0.2, 0.6, 1.6, 1.1, 0.4, and 1.8 µg/ml. The sensitivity of exposed P. washingtonensis and P. pyri populations collected in 2017 revealed potential shifts toward BOSC and PYRA resistance. The efficacy of the six fungicides to control isolates of each pathogen with different in vitro sensitivity levels was evaluated on apple and pear fruit. FDL, DFC, and PYRI controlled both Phacidiopycnis spp. regardless of their EC50 values after 5 months of storage at 0°C in a regular atmosphere. The consistent occurrence of Phacidiopycnis spp. will require continuous monitoring and development of disease management strategies based on fungicide phenotypes and efficacy of existing fungicides assessed herein.


Asunto(s)
Ascomicetos/efectos de los fármacos , Fungicidas Industriales/farmacología , Malus/microbiología , Enfermedades de las Plantas/microbiología , Pyrus/microbiología , Compuestos de Bifenilo/farmacología , Dioxoles/farmacología , Frutas/microbiología , Niacinamida/análogos & derivados , Niacinamida/farmacología , Oregon , Enfermedades de las Plantas/prevención & control , Pirimidinas/farmacología , Pirroles/farmacología , Sensibilidad y Especificidad , Estrobilurinas/farmacología , Tiabendazol/farmacología , Washingtón
13.
PLoS One ; 8(5): e63257, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717405

RESUMEN

RNA silencing is a mechanism of gene regulation by sequence specific RNA degradation and is involved in controlling endogenous gene expression and defense against invasive nucleic acids such as viruses. RNA silencing has been proven to be transmitted between scions and rootstocks through grafting, mostly using transgenic plants. It has been reported that RNA silencing of tobacco endogenous genes, NtTOM1 and NtTOM3, that are required for tobamovirus multiplication, resulted in high resistance against several tobamoviruses. In the present study, we examined the graft transmission of RNA silencing for conferring virus resistance to non-transgenic scions of the same and different Nicotiana species grafted onto rootstocks in which both NtTOM1 and NtTOM3 were silenced. Non-transgenic Nicotiana tabacum (cvs. Samsun and Xanthi nc) and N. benthamiana were used as scions for grafting onto the rootstocks silenced with both genes. Short interfering RNA (siRNA) of NtTOM1 and NtTOM3 was detected in both the scions and the rootstocks eight weeks after grafting. The leaves were detached from the scions and inoculated with several tobamoviruses. The virus accumulation was tested by ELISA and northern blot analysis. The viruses were detected in grafted scions at extremely low levels, showing that virus resistance was conferred. These results suggest that RNA silencing was induced in and virus resistance was conferred to the non-transgenic scions by grafting onto silenced rootstocks. The effect of low temperature on siRNA accumulation and virus resistance was not significantly observed in the scions.


Asunto(s)
Nicotiana/genética , Nicotiana/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Interferencia de ARN/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/virología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/virología , ARN Interferente Pequeño/genética , Tobamovirus/genética
14.
Plant Cell Rep ; 31(8): 1371-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22350408

RESUMEN

Cucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of melon plants worldwide. For effective control of this virus using the transgenic approach, the direct repeat of the movement protein gene of CGMMV was used for transforming melon plants by Agrobacterium tumefaciens. PCR and Southern blot analyses of T3 confirmed that they carried the transgene. Northern blot analysis with total RNA showed that transgene transcript RNA as well as siRNA was observed in all plants tested. Separate leaves or individual plants were inoculated with CGMMV and subjected to ELISA and RNA blot analysis using the coat protein gene probe of the virus. Compared to nontransgenic control, these plants were shown to have high virus resistance. Furthermore, cytosine of the transgene DNA in the plants was methylated. Thus, these results reveal that the transgenic lines were highly resistant to the virus through RNA silencing. Key message High virus resistance was obtained in transgenic melon plants with direct repeat of movement protein gene of Cucumber green mottle mosaic tobamovirus through RNA silencing.


Asunto(s)
Cucumovirus/genética , Cucurbitaceae/genética , Cucurbitaceae/virología , Genes Virales/genética , Enfermedades de las Plantas/virología , Proteínas de Movimiento Viral en Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Northern Blotting , Southern Blotting , Metilación de ADN/genética , ADN de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA