Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Health Phys ; 126(5): 339-345, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526252

RESUMEN

ABSTRACT: After considering epidemiological studies on the induction of cataracts in individuals exposed to radiation, the International Commission on Radiological Protection recommended, in 2012, a reduction in the annual eye-dose limit of occupationally exposed workers. This imposed higher performance demands on existing dosimetry systems and the development of new dosimetry technologies. The operational quantity to be measured is Hp(3), the personal dose equivalent at a depth of 3 mm in an ICRU 4-element tissue cylinder 20 cm in height and 20 cm in diameter. The conversion coefficients per unit incident fluence, Hp(3)/Φ, were calculated using Monte Carlo simulation codes. In the case of incident electrons, the literature shows that the resulting coefficients depend on the electron transport options selected for the Monte Carlo simulations as well as the tally zone thickness. In this study, electron operational eye-lens dose coefficients were calculated using MCNP6.2 in its default settings and by invoking the single-event feature. The results were compared to those from PENELOPE, a well-known code for its enhanced accuracy in handling low-energy electron transport. The results are in agreement for the entire energy range for these two series of simulations, but differences are found with previously published dose coefficients in the literature. This impacts the calibration of dosimeters for electrons and may require a change in the commonly accepted dose coefficients.


Asunto(s)
Catarata , Cristalino , Humanos , Electrones , Método de Montecarlo , Calibración
2.
J Radiol Prot ; 43(3)2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37619555

RESUMEN

This paper is a continuation of a study published recently by the authors. It presents and discusses computed personal absorbed dose in the lens of the eye (Dp lens/Φ), and a relative biological effectiveness (RBE)-weighted absorbed dose (in terms of an newly proposed operational quantity RBE ×Dp lens/Φ), conversion coefficients for the lens of the eye for neutron exposure at incident energies from thermal to ∼20 MeV and at angles of incidence from 0°to 90°in 15° increments, at 180° and for rotational incidence irradiation geometry (from 0°to 360°in 5°increments). These conversion coefficients were obtained from a simulation model developed for this study that contains the stylised eye model, embedded in the adult UF-ORNL mathematical phantom, whereby the previously stated RBE-weighted absorbed dose was obtained using the proposed RBE versus neutron energy distribution compiled in a previous paper by the authors. The simulations carried out for this study using the Monte Carlo N-Particle transport code version 6.2, were conducted in a realistic human eye model, for the left and right sensitive and whole volume of the lens of the eye, considering the recent proposed redefinition of the operational quantities for external radiation exposure in International Commission on Radiation Units and Measurements (ICRU) report 95. A comprehensive set of tabulated data for neutron fluence-to-dose conversion coefficients (Dp lens/Φin pGy cm2) and RBE-weighted absorbed dose (RBE ×Dp lens/Φin pGy cm2) conversion coefficients is included in this paper as a function of incident neutron energy and angle of incidence. Data forDp lens/Φ(pGy cm2) are compared to similar data from the literature for validation of our model. Data for RBE ×Dp lens/Φ(in pGy cm2), were also compared to the equivalent operational quantityHp(3,α)/Φ(in pSv cm2) conversion coefficients calculated at 3 mm depth in a cylindrical phantom for different incident neutron energies and angles of incidence from 0°to 75°in 15°increments to demonstrate the relevance of this newly proposed operational quantity for doses resulting in tissue reactions (deterministic effects) which should be quoted in Gray (RBE-weighted absorbed dose, RBE ×D(Gy)), rather than Sievert (Sv) which is reserved for stochastic effects. The current neutron weighted absorbed dose (RBE ×Dp lens) is proposed for the tissue reactions in the eye-lens for neutron radiation as per National Council on Radiation Protection and Measurements report 180 and in line with the recent proposal for the review and revision of the System of Radiological Protection to Keeping the International Commission on Radiological Protection (ICRP) recommendations fit for purpose. This method would bring better alignment between the dose limits in ICRP 118 and the new operational quantity consistent with the units of the new eye-lens dose limits without being overly conservative. The utilization of the proposed new operational quantities, as outlined in ICRU 95, has the potential to address the ongoing challenge in enforcing regulatory limits for neutron eye dose, specifically the use of Gy instead of Sv. It should be noted that the applicability of this will vary from country to country as in many countries the legislation is likely to mandate the use ofHp(3) until the regulation is amended. This approach can serve as an interim solution while awaiting the issuance of the new ICRP general recommendations, which is expected to take several years. Implementing the new operational quantities can contribute to enhancing the accuracy and effectiveness of neutron eye dose limit enforcement.


Asunto(s)
Cristalino , Adulto , Humanos , Incidencia , Efectividad Biológica Relativa , Radiometría , Neutrones
3.
Radiat Res ; 200(2): 162-175, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37410087

RESUMEN

Previous publications describe the estimation of the dose from ionizing radiation to the whole lens or parts of it but have not considered other eye tissues that are implicated in cataract development; this is especially critical for low-dose, low-ionizing-density exposures. A recent review of the biological mechanisms of radiation-induced cataracts showed that lenticular oxidative stress can be increased by inflammation and vascular damage to non-lens tissues in the eye. Also, the radiation oxygen effect indicates different radiosensitivities for the vascular retina and the severely hypoxic lens. Therefore, this study uses the Monte Carlo N-Particle simulations to quantify dose conversion coefficients for several eye tissues for incident antero-posterior exposure to electrons, photons, and neutrons (and the tertiary electron component of neutron exposure). A stylized, multi-tissue eye model was developed by modifying a model by Behrens etal. (2009) to include the retina, uvea, sclera, and lens epithelial cell populations. Electron exposures were simulated as a single eye, whereas photon and neutron exposures were simulated employing two eyes embedded in the ADAM-EVA phantom. For electrons and photons, dose conversion coefficients are highest for either anterior tissues for low-energy incident particles or posterior tissues for high-energy incident particles. Neutron dose conversion coefficients generally increase with increasing incident energy for all tissues. The ratio of the absorbed dose delivered to each tissue to the absorbed dose delivered to the whole lens demonstrated the considerable deviation of non-lens tissue doses from lens doses, depending on particle type and its energy. These simulations demonstrate that there are large variations in the dose to various ocular tissues depending on the incident radiation dose coefficients; this large variation will potentially impact cataract development.


Asunto(s)
Ojo , Cristalino , Radiación Ionizante , Electrones , Fotones , Neutrones , Ojo/efectos de la radiación , Cristalino/efectos de la radiación , Catarata , Retinitis , Método de Montecarlo , Humanos , Simulación por Computador
4.
J Radiol Prot ; 42(4)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538825

RESUMEN

In 2012, the International Commission on Radiological Protection issued new recommendations, in publication 118, regarding the dose limits to the eye-lens. New analyses of historical exposure data had indicated that radiation-induced cataracts may appear at lower doses than previously assumed. This spurred largescale efforts in a variety of fields including dosimetry, radiation effects simulations, and the review of national regulatory limits. On the simulation side, much work led to the publication of dose rate conversion factors (DRCFs), to calculate the dose to the radiosensitive part of the eye-lens, and to the whole eye-lens as functions of the incident fluence of electron, photon, positron, and neutron radiation. The standard, ISO-15382 (2015Radiological Protection-Procedures for Monitoring the Dose to the Lens of the Eye, the Skin and the Extremities), from the International Organization for Standardization (ISO), stated that the direct contact of a hot radioactive particle on the eye-lens represents a special contamination condition that must be considered. The aim of this work was to produce tabulated data of eye-lens dose rates, per activity (MBq), for a variety of radionuclides. In this work, the dose to the eye-lens from contamination directly in contact with the cornea, expressed in terms of DRCFs for eye-lens, in units of Gy h-1MBq-1, are presented for 102 radionuclides of interest. These radionuclides were selected as they had been considered by the International Atomic Energy Agency of importance for skin dose. The method consisted of two steps. The first was the determination of the DRCFs for mono-energetic electrons and photons for a hot particle in contact with the eye-lens, followed by the folding of these quantities with the emissions of the radionuclides of interest. Contributions from spontaneous fission neutrons were considered separately. Exposure geometries for spherical hot particles of different dimensions, materials and locations on the cornea were considered. In addition, partial surface coverage of the cornea, consistent with an accidental exposure to a contaminated liquid, was also modelled. Resulting radionuclide DRCFs were verified, for a few specific geometries and radionuclides with dedicated Monte Carlo simulations. The final data are presented in several tables included in this paper.


Asunto(s)
Cristalino , Traumatismos por Radiación , Humanos , Dosis de Radiación , Radiometría/métodos , Radioisótopos , Cristalino/efectos de la radiación , Córnea , Método de Montecarlo
5.
J Radiol Prot ; 42(3)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36070675

RESUMEN

For planned occupational exposure situations, the International Commission on Radiological Protection (ICRP) publication 118 recommends an equivalent dose limit for the lens of the eye of 20 mSv yr-1averaged over 5 yr with no single year exceeding 50 mSv. Regulatory authorities of various jurisdictions worldwide followed some or all, of the ICRP recommendations and implemented reduced occupational lens of eye dose limits in their legislation. As compliance with the eye-lens dose limit will be based on the summation of doses received from all types of radiation, applicable to a variety of workplaces, the contribution of neutrons to eye lens dose will be important where it contributes a significant fraction of the total dose to the eye lens. This work presents and discusses computed personal absorbed dose (Dlens/Φ), and personal dose equivalent (Hp(3)/Φ) as well as a newly proposed relative biological effectiveness (RBE)-weighted absorbed dose (RBE ×Dlens/Φ) conversion coefficients for the lens of the eye for neutron exposure at incident energies from thermal to ∼20 MeV. TheDlens/Φ coefficients were obtained from a simulation model developed for this study that contains the stylised eye model embedded in the adult UF-ORNL mathematical phantom. The modelling techniques used in these simulations were also used to calculateHp(3)/Φ for the International Commission on Radiation Units and Measurements (ICRU) slab and cylinder phantoms. All simulations carried out for this study utilised the Monte Carlo N-Particle (MCNP) series of codes. The results are compared with the related published data. The issue of compliance with the current equivalent dose limit for the lens of the eye is addressed from a neutron perspective considering the recent proposed redefinition of the operational quantities for external radiation exposure in ICRU report 95. The use of a radiation weighted absorbed dose (RBE ×Dlens, in Gy) is proposed for the tissue reactions in the eye-lens for neutron radiation as per the National Council on Radiation Protection and Measurements report 180, and in line with the recent review and revision of the System of Radiological Protection To Keeping the ICRP Recommendations Fit for Purpose, which states that RBE weighted dose should be used for high-Linear energy transfer (LET) radiations such as neutrons. This confirms the earlier statement in ICRP publication 92, paragraph 297 and reiterated in the Executive summary, paragraph (q) of ICRP publication 118. The proposed approach would provide an operational quantity consistent with the units of the new eye-lens dose limits without being overly conservative.


Asunto(s)
Cristalino , Protección Radiológica , Método de Montecarlo , Neutrones , Dosis de Radiación , Protección Radiológica/métodos , Radiometría/métodos
6.
Cureus ; 14(1): e21443, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35223228

RESUMEN

Intermittent high-dose methylprednisolone therapy is widely used for various autoimmune conditions treatment. Common side effects are well known and monitored carefully during therapy. Although cardiovascular adverse events are uncommon, they have been increasingly reported in the literature. This is a case of a 30-year-old female who developed symptomatic sinus bradycardia after receiving three grams of intravenous methylprednisolone pulse therapy for multiple sclerosis flare-ups. Her pulse rate reached 40bpm, together with lightheadedness and chest tightness. An electrocardiogram confirmed sinus bradycardia, for which she was initially managed by splitting the methylprednisolone dose in half; however, 12 hours later, the heart rate decreased further to 35bpm, and her symptoms worsened. Subsequently, the medicine was omitted, and the patient shifted to the intensive care unit for close observation and monitoring. She was treated conservatively with close observation resulted in a gradual normalization of the heart rate. The diagnosis of methylprednisolone pulse-induced bradycardia was made after excluding other common etiologies of sinus bradycardia. This case report aims for careful cardiovascular monitoring in patients receiving high doses of methylprednisolone due to the dose-dependent cardiovascular risks.

7.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055062

RESUMEN

Theoretical evaluations indicate the radiation weighting factor for thermal neutrons differs from the current International Commission on Radiological Protection (ICRP) recommended value of 2.5, which has radiation protection implications for high-energy radiotherapy, inside spacecraft, on the lunar or Martian surface, and in nuclear reactor workplaces. We examined the relative biological effectiveness (RBE) of DNA damage generated by thermal neutrons compared to gamma radiation. Whole blood was irradiated by 64 meV thermal neutrons from the National Research Universal reactor. DNA damage and erroneous DNA double-strand break repair was evaluated by dicentric chromosome assay (DCA) and cytokinesis-block micronucleus (CBMN) assay with low doses ranging 6-85 mGy. Linear dose responses were observed. Significant DNA aberration clustering was found indicative of high ionizing density radiation. When the dose contribution of both the 14N(n,p)14C and 1H(n,γ)2H capture reactions were considered, the DCA and the CBMN assays generated similar maximum RBE values of 11.3 ± 1.6 and 9.0 ± 1.1, respectively. Consequently, thermal neutron RBE is approximately four times higher than the current ICRP radiation weighting factor value of 2.5. This lends support to bimodal peaks in the quality factor for RBE neutron energy response, underlining the importance of radiological protection against thermal neutron exposures.


Asunto(s)
Modelos Teóricos , Neutrones , Efectividad Biológica Relativa , Aberraciones Cromosómicas/efectos de la radiación , Daño del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Pruebas de Micronúcleos/métodos
8.
Cureus ; 13(10): e18592, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34765357

RESUMEN

Vascular complications of Behcet'sdisease, including intracardiac thrombus formation, are one of the significant causes of mortality and morbidity in this population. Similar to other vasculitic disorders, Behcet's disease is primarily treated with immunosuppressants. While the benefit of adding anticoagulants in Behcet's disease with thromboembolism remains debatable, some literature encourages its use with concomitant intracardiac thrombus. Herewith, we present the case of a young male who was diagnosed with bilateral pulmonary embolism in addition to right ventricle intracardiac thrombus upon his scheduled dose of infliximab infusion. He was managed by adding azathioprine to his regimen together with oral prednisolone and warfarin with a target international normalized ratio of 2-3. This case report addresses the importance and outcome of early identification of Behcet's disease's vascular complications and immediate initiation of anticoagulation accordingly.

9.
Radiat Res ; 195(2): 211-217, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33400791

RESUMEN

Cells exposed to fast neutrons often exhibit a non-Poisson distribution of chromosome aberrations due to the high ionization density of the secondary reaction products. However, it is unknown whether lymphocytes exposed to californium-252 (252Cf) spectrum neutrons, of mean energy 2.1 MeV, demonstrate this same dispersion effect at low doses. Furthermore, there is no consensus regarding the relative biological effectiveness (RBE) of 252Cf neutrons. Dicentric and ring chromosome formations were assessed in human peripheral blood lymphocytes irradiated at doses of 12-135 mGy. The number of aberrations observed were tested for adherence to a Poisson distribution and the maximum low-dose relative biological effectiveness (RBEM) was also assessed. When 252Cf-irradiated lymphocytes were examined along with previously published cesium-137 (137Cs) data, RBEM values of 15.0 ± 2.2 and 25.7 ± 3.8 were found for the neutron-plus-photon and neutron-only dose components, respectively. Four of the five dose points were found to exhibit the expected, or close to the expected non-Poisson over-dispersion of aberrations. Thus, even at low doses of 252Cf fast neutrons, when sufficient lymphocyte nuclei are scored, chromosome aberration clustering can be observed.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Linfocitos/efectos de la radiación , Californio/farmacología , Radioisótopos de Cesio/farmacología , Relación Dosis-Respuesta en la Radiación , Neutrones Rápidos/efectos adversos , Rayos gamma/efectos adversos , Humanos , Linfocitos/patología , Efectividad Biológica Relativa
10.
Radiat Res ; 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33264403

RESUMEN

Cells exposed to fast neutrons often exhibit a non-Poisson distribution of chromosome aberrations due to the high ionization density of the secondary reaction products. However, it is unknown whether lymphocytes exposed to californium-252 (252Cf) spectrum neutrons, of mean energy 2.1 MeV, demonstrate this same dispersion effect at low doses. Furthermore, there is no consensus regarding the relative biological effectiveness (RBE) of 252Cf neutrons. Dicentric and ring chromosome formation was assessed in human peripheral blood lymphocytes irradiated at doses of 12-135 mGy. The number of aberrations observed were tested for adherence to a Poisson distribution and the maximum low-dose relative biological effectiveness (RBEM) was also assessed. When 252Cf-irradiated lymphocytes were examined along with previously published cesium-137 (137Cs) data, RBEM values of 15.0 ± 2.2 and 25.7 ± 3.8 were found for the neutron-plus-photon and neutron-only dose components, respectively. Four of the five dose points were found to exhibit the expected, or close to the expected non-Poisson over-dispersion of aberrations. Thus, even at low doses of 252Cf fast neutrons, when enough lymphocyte nuclei are scored, chromosome aberration clustering can be observed.

11.
Health Phys ; 107(4): 311-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25162421

RESUMEN

There are numerous scenarios where radioactive particulates can be displaced by external forces. For example, the detonation of a radiological dispersal device in an urban environment will result in the release of radioactive particulates that in turn can be resuspended into the breathing space by external forces such as wind flow in the vicinity of the detonation. A need exists to quantify the internal (due to inhalation) and external radiation doses that are delivered to bystanders; however, current state-of-the-art codes are unable to calculate accurately radiation doses that arise from the resuspension of radioactive particulates in complex topographies. To address this gap, a coupled computational fluid dynamics and Monte Carlo radiation transport approach has been developed. With the aid of particulate injections, the computational fluid dynamics simulation models characterize the resuspension of particulates in a complex urban geometry due to air-flow. The spatial and temporal distributions of these particulates are then used by the Monte Carlo radiation transport simulation to calculate the radiation doses delivered to various points within the simulated domain. A particular resuspension scenario has been modeled using this coupled framework, and the calculated internal (due to inhalation) and external radiation doses have been deemed reasonable. GAMBIT and FLUENT comprise the software suite used to perform the Computational Fluid Dynamics simulations, and Monte Carlo N-Particle eXtended is used to perform the Monte Carlo Radiation Transport simulations.


Asunto(s)
Hidrodinámica , Dosis de Radiación , Simulación por Computador , Método de Montecarlo , Programas Informáticos , Suspensiones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...