Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 89(5): e202300544, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38235954

RESUMEN

Photo-responsive synergetic therapeutics achieved significant attraction in cancer theranostic due to the versatile characteristics of nanomaterials. There have been substantial efforts in developing the simplest nano-design with exceptional synergistic properties and multifunctionalities. In this work, biocompatible Ti2C MXene nano bipyramids (MNBPs) were synthesized by hydrothermal method with dual functionalities of photothermal and photodynamic therapies. The MNBPs shape was obtained from two-dimensional (2D) Ti2C nanosheets by controlling the temperature of the reaction mixture. The structure of these Ti2C MNBPs was characterized by a high-resolution transmission electron microscope, scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. The Ti2C NBPs have shown exceptional photothermal properties with increased temperature to 72.3 °C under 808 nm laser irradiation. The designed nano bipyramids demonstrated excellent cellular uptake and biocompatibility. The Ti2C NBP has established a remarkable photothermal therapy (PTT) effect against 4T1 breast cancer cells. Moreover, Ti2C NBPs showed a profound response to UV light (6 mW/cm2) and produced reactive oxygen species, making them useful for photodynamic therapy (PDT). These in-vitro studies pave a new path to tune the properties of photo-responsive MXene nanosheets, indicating a potential use in biomedical applications.


Asunto(s)
Neoplasias de la Mama , Fotoquimioterapia , Fármacos Fotosensibilizantes , Titanio , Titanio/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Femenino , Línea Celular Tumoral , Ratones , Supervivencia Celular/efectos de los fármacos , Humanos , Animales , Terapia Fototérmica , Nanoestructuras/química , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ensayos de Selección de Medicamentos Antitumorales
2.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364279

RESUMEN

PEDOT: PSS is a commonly used hole-transport layer (HTL) in inverted perovskite solar cells (PSCs) due to its compatibility with low-temperature solution processing. However, it possesses lower conductivity than other conductive polymers and metal oxides, along with surface defects, limiting its photovoltaic performance. In this study, we introduced two-dimensional Ti3C2Tx (MXene) as an additive in the PEDOT:PSS HTL with varying doping concentrations (i.e., 0, 0.03, 0.05, and 0.1 wt.%) to tune the electrical conductivity of PEDOT:PSS and to modify the properties of the perovskite film atop it. We noted that the grain size of the CH3NH3PbI3 (MAPI3) perovskite layer grown over an optimal concentration of MXene (0.03 wt.%)-doped PEDOT:PSS increased from 250 nm to 400 nm, reducing charge recombination due to fewer grain boundaries. Ultraviolet photoelectron spectroscopy (UPS) revealed increased work function (WF) from 4.43 eV to 4.99 eV with 0.03 wt.% MXene doping, making the extraction of holes easier due to a more favorable energy level alignment with the perovskite. Quantum chemical investigations based on density functional theory (DFT) were conducted at the ωB97XD/6-311++G(d,p) level of theory to provide more insight into the stability, bonding nature, and optoelectronic properties of the PEDOT:PSS-MXene system. The theoretical investigations revealed that the doping of PEDOT:PSS with Ti3C2Tx could cause a significant effect on the electronic properties of the HTL, as experimentally demonstrated by an increase in the electrical conductivity. Finally, the inverted PSCs employing 0.03 wt.% MXene-doped PEDOT:PSS showed an average power conversion efficiency (PCE) of 15.1%, up from 12.5% for a reference PSC employing a pristine PEDOT:PSS HTL. The champion device with a 0.03 wt.% MXene-PEDOT:PSS HTL achieved 15.5% PCE.

3.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956874

RESUMEN

Two-dimensional MXenes possessed exceptional physiochemical properties such as high electrical conductivity (20,000 Scm-1), flexibility, mechanical strength (570 MPa), and hydrophilic surface functionalities that have been widely explored for energy storage, sensing, and catalysis applications. Recently, the fabrication of MXenes thin films has attracted significant attention toward electronic devices and sensor applications. This review summarizes the exciting features of MXene thin film fabrication methods such as vacuum-assisted filtration (VAF), electrodeposition techniques, spin coating, spray coating, dip-coating methods, and other physical/chemical vapor deposition methods. Furthermore, a comparison between different methods available for synthesizing a variety of MXenes films was discussed in detail. This review further summarizes fundamental aspects and advances of MXenes thin films in solar cells, batteries, electromagnetic interference shielding, sensing, etc., to date. Finally, the challenges and opportunities in terms of future research, development, and applications of MXenes-based films are discussed. A comprehensive understanding of these competitive features and challenges shall provide guidelines and inspiration for further growth in MXenes-based functional thin films and contribute to the advances in MXenes technology.


Asunto(s)
Propiedades de Superficie
4.
J Mater Chem B ; 10(34): 6532-6545, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36000458

RESUMEN

Nanotheranostic agents based on plasmonic nanostructures with their resonance wavelengths located in the second near-infrared window (NIR-II) have gained significant attention in profound tumor photothermal therapy. However, the modulation of localized surface plasmon resonance of gold nanomaterials from the first near-infrared (NIR-I) window to the NIR-II window is still challenging. The structures and compositions of the plasmonic nanomaterials have demonstrated promising characteristics in controlling the optical properties of plasmonic nanostructures. Here, gold nanorod (Au NR) coated with an ultrathin palladium (Pd) shell was developed for tumor-targeted NIR-II photothermal-augmented nanocatalytic therapy through the combination of compositional manipulation and structural evolution strategies. These Au@Pd core-shell hybrid NRs (HNRs) were functionalized with biocompatible chitosan (CS) to acquire lower toxicity and higher stability in physiological systems. Further, Au@Pd-CS HNRs were endowed with an excellent targeting ability by conjugating with folic acid (FA). The as-synthesized Au@Pd-CS-FA HNRs show efficient and complete photothermal ablation of tumor cells upon 1064 nm laser irradiation. The remarkable photothermal conversion efficiency of 69.0% was achieved, which is superior to many reported photothermal agents activated in the NIR-II region. Excitingly, Au@Pd-CS-FA HNRs have peroxidase and catalase activities, simultaneously producing ˙OH for catalytic therapy and O2 for relieving tumor hypoxia and photodynamic therapy. Additionally, in vivo tumor photothermal therapy was carried out, where the biocompatible Au@Pd-CS-FA HNRs penetrate intensely into the tumor cells and consequently show remarkable therapeutic effects. The idea about plasmonic modulation behind the bimetallic core-shell nanostructure in this report can be extended to construct new classes of metal-based nanotheranostic agents with dual-modal combined therapy as an alternative to traditional chemotherapy.


Asunto(s)
Nanotubos , Neoplasias , Oro/química , Humanos , Concentración de Iones de Hidrógeno , Nanotubos/química , Neoplasias/tratamiento farmacológico , Paladio/farmacología , Terapia Fototérmica
5.
J Mater Chem B ; 9(33): 6623-6633, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34378616

RESUMEN

Cancer treatment has been recently energized by nanomaterials that simultaneously offer diagnostic and therapeutic effects. Among the imaging and treatment modalities in frontline research today, magnetic resonance imaging (MRI) and phototherapy have gained significant interest due to their noninvasiveness among other intriguing benefits. Herein, Fe(iii) was adsorbed on titanium dioxide to develop magnetic Fe-TiO2 nanocomposites (NCs) which leverage the Fe moiety in a double-edge-sword approach to: (i) achieve T1-weighted MRI contrast enhancement, and (ii) improve the well-established photodynamic therapeutic efficacy of TiO2 nanoparticles. Interestingly, the proposed NCs exhibit classic T1 MRI contrast agent properties (r1 = 1.16 mM-1 s-1) that are comparable to those of clinically available contrast agents. Moreover, the NCs induce negligible cytotoxicity in traditional methods and show remarkable support to the proliferation of intestine organoids, an advanced toxicity evaluation system based on three-dimensional organoids, which could benefit their potential safe application for in vivo cancer theranostics. Aided by the Fenton reaction contribution of the Fe component of the Fe-TiO2 NCs, considerable photo-killing of cancer cells is achieved upon UV irradiation at very low (2.5 mW cm-2) intensity in typical cancer PDT. It is therefore expected that this study will guide the engineering of other biocompatible magnetic titania-based nanosystems with multi-faceted properties for biomedical applications.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biocompatibles/farmacología , Imagen por Resonancia Magnética , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Fenómenos Magnéticos , Nanopartículas de Magnetita/química , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Ensayo de Materiales , Ratones , Ratones Endogámicos C57BL , Nanotubos/química , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Titanio/química , Titanio/farmacología , Rayos Ultravioleta
6.
Mikrochim Acta ; 188(1): 10, 2021 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389164

RESUMEN

Hybrid aerogels are promising candidates for energy storage, biosensing, and medical applications, but the conventional fabrication methods, being time-consuming and complex, limit their widespread utilization. The critical issues affecting their functionality include the un-controllable particle dispersity, loading of active materials, and the porosity. We report a simple and efficient method to synthesize in situ reduced Au nanoparticles@graphene (Au@graphene) hybrid aerogel using near-infrared radiation (NIR), resulting the uniform loading of well-dispersed Au nanoparticles (Au-NPs) as well as in situ reduction of graphene oxide (GO) with enhanced conductivity. The concentration of iso-propylacrylamide and GO can be adjusted to control the aerogel pore size during the freeze-drying process. Reduction of HAuCl4 and GO to high extent under NIR light was confirmed with advanced characterization techniques. Density functional theory based calculations with generalized gradient-corrected functional (GGA/PW91) in the hybrid aerogel system, and dnd basis sets are used for the confirmation of possible interactions between the GO, Au-NPs, and the polymer. The as-designed highly porous and conductive aerogel shows an excellent humidity response (30-97%) and successfully removes the methylene blue pollutant from the aqueous solution to a high extent (90%). Therefore, Au@graphene hybrid aerogel is potentially an exciting candidate for a wide range of applications in the humidity sensing and biomedical disease detection.


Asunto(s)
Colorantes/química , Geles/química , Grafito/química , Humedad , Nanopartículas del Metal/química , Azul de Metileno/química , Resinas Acrílicas/química , Teoría Funcional de la Densidad , Geles/síntesis química , Oro/química , Grafito/síntesis química , Modelos Químicos , Porosidad , Agua/análisis , Agua/química , Contaminantes Químicos del Agua/química
7.
Langmuir ; 34(16): 4908-4913, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29605998

RESUMEN

Humidity sensors have received considerable attention in recent years because of their significance and wide applications in agriculture, industries, goods stores, and medical fields. However, the conventional humidity sensors usually possessed a complex sensing mechanism and low sensitivity and required a time-consuming, labor-intensive process. The exploration for an ideal sensing material to amplify the sensitivity of humidity sensors is still a big challenge. Herein, we developed a simple, low-cost, and scalable fabrication strategy to construct a highly sensitive humidity sensor based on polymer/gold nanoparticle (AuNP) hybrid materials. The hybrid polymer/AuNP aerogel was prepared by a simple freeze-drying method. By taking advantage of the conductivity of AuNPs and high surface area of the highly porous structure, the hybrid poly- N-isopropylacrylamide (PNIPAm)/AuNP aerogel showed high sensitivity to water molecules. Interestingly, the hybrid PNIPAm/AuNP aerogel-based humidity sensor can be used to detect human breath in different states, such as normal breath, fast breath, and deep breath, or in different individuals such as persons with illness, persons who are smoking, and persons who are normal, which is promising in practical flexible wearable devices for human health monitoring. In addition, the humidity sensor can be used in whistle tune recognition.


Asunto(s)
Pruebas Respiratorias/métodos , Geles/química , Oro/química , Humedad , Nanopartículas del Metal/química , Humanos , Polímeros/química , Agua/química
8.
Macromol Rapid Commun ; 39(9): e1800019, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29532592

RESUMEN

Although shape memory polymers have been highlighted widely and developed rapidly, it is still a challenging task to realize complex temporary shapes automatically in practical applications. Herein, a novel shape memory hydrogel with the ability of self-deformation is presented. Through constructing an anisotropic poly(acrylic acid)-polyacrylamide (PAAc-PAAm) structure, the obtained hydrogel exhibits stable self-deformation behavior in response to pH stimulus, and the shapes that formed automatically can be fixed by the coordination between carboxylic groups and Fe3+ ; therefore, self-deformation and shape memory behaviors are integrated in one system. Moreover, the magnitude of auto-deformation and shape memory could be adjusted with the concentration of corresponding ions, leading to programmable shape memory and shape recovery processes.


Asunto(s)
Resinas Acrílicas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Resinas Acrílicas/síntesis química , Anisotropía , Iones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...