Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 108029, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37860766

RESUMEN

Skin immune homeostasis is a multi-faceted process where dermal dendritic cells (DDCs) are key in orchestrating responses to environmental stressors. We have previously identified CD141+CD14+ DDCs as a skin-resident immunoregulatory population that is vitamin-D3 (VitD3) inducible from monocyte-derived DCs (moDCs), termed CD141hi VitD3 moDCs. We demonstrate that CD141+ DDCs and CD141hi VitD3 moDCs share key immunological features including cell surface markers, reduced T cell stimulation, IL-10 production, and a common transcriptomic signature. Bioinformatic analysis identified the neuroactive ligand receptor pathway and the neuropeptide, urocortin 2 (UCN2), as a potential immunoregulatory candidate molecule. Incubation with VitD3 upregulated UCN2 in CD141+ DCs and UVB irradiation induced UCN2 in CD141+ DCs in healthy skin in vivo. Notably, CD141+ DDC generation of suppressive Tregs was dependent upon the UCN2 pathway as in vivo administration of UCN2 reversed skin inflammation in humanized mice. We propose the neuropeptide UCN2 as a novel skin DC-derived immunoregulatory mediator with a potential role in UVB and VitD3-dependent skin immune homeostasis.

2.
Nat Commun ; 14(1): 3378, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291228

RESUMEN

B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.


Asunto(s)
Linfocitos B , Melanoma , Humanos , Melanoma/genética , Anticuerpos , Inmunidad Humoral , Autoantígenos/genética , Microambiente Tumoral
3.
Nat Commun ; 14(1): 2192, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185332

RESUMEN

Outcomes for half of patients with melanoma remain poor despite standard-of-care checkpoint inhibitor therapies. The prevalence of the melanoma-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) expression is ~70%, therefore effective immunotherapies directed at CSPG4 could benefit many patients. Since IgE exerts potent immune-activating functions in tissues, we engineer a monoclonal IgE antibody with human constant domains recognizing CSPG4 to target melanoma. CSPG4 IgE binds to human melanomas including metastases, mediates tumoricidal antibody-dependent cellular cytotoxicity and stimulates human IgE Fc-receptor-expressing monocytes towards pro-inflammatory phenotypes. IgE demonstrates anti-tumor activity in human melanoma xenograft models engrafted with human effector cells and is associated with enhanced macrophage infiltration, enriched monocyte and macrophage gene signatures and pro-inflammatory signaling pathways in the tumor microenvironment. IgE prolongs the survival of patient-derived xenograft-bearing mice reconstituted with autologous immune cells. No ex vivo activation of basophils in patient blood is measured in the presence of CSPG4 IgE. Our findings support a promising IgE-based immunotherapy for melanoma.


Asunto(s)
Melanoma , Proteoglicanos , Humanos , Ratones , Animales , Proteoglicanos/metabolismo , Antígenos , Proteoglicanos Tipo Condroitín Sulfato , Melanoma/metabolismo , Anticuerpos Monoclonales/farmacología , Inmunoglobulina E , Microambiente Tumoral
4.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36044899

RESUMEN

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Animales , Citocinas , Folículo Piloso/patología , Humanos , Inmunidad Innata , Inflamación , Interleucina-13 , Linfocitos/patología , Ratones , Infestaciones por Ácaros/complicaciones , Infestaciones por Ácaros/parasitología , Infestaciones por Ácaros/patología , Simbiosis
5.
Elife ; 102021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34939928

RESUMEN

Solar ultraviolet radiation (UVR) is a major source of skin damage, resulting in inflammation, premature ageing, and cancer. While several UVR-induced changes, including extracellular matrix reorganisation and epidermal DNA damage, have been documented, the role of different fibroblast lineages and their communication with immune cells has not been explored. We show that acute and chronic UVR exposure led to selective loss of fibroblasts from the upper dermis in human and mouse skin. Lineage tracing and in vivo live imaging revealed that repair following acute UVR is predominantly mediated by papillary fibroblast proliferation and fibroblast reorganisation occurs with minimal migration. In contrast, chronic UVR exposure led to a permanent loss of papillary fibroblasts, with expansion of fibroblast membrane protrusions partially compensating for the reduction in cell number. Although UVR strongly activated Wnt signalling in skin, stimulation of fibroblast proliferation by epidermal ß-catenin stabilisation did not enhance papillary dermis repair. Acute UVR triggered an infiltrate of neutrophils and T cell subpopulations and increased pro-inflammatory prostaglandin signalling in skin. Depletion of CD4- and CD8-positive cells resulted in increased papillary fibroblast depletion, which correlated with an increase in DNA damage, pro-inflammatory prostaglandins, and reduction in fibroblast proliferation. Conversely, topical COX-2 inhibition prevented fibroblast depletion and neutrophil infiltration after UVR. We conclude that loss of papillary fibroblasts is primarily induced by a deregulated inflammatory response, with infiltrating T cells supporting fibroblast survival upon UVR-induced environmental stress.


Asunto(s)
Linaje de la Célula/efectos de la radiación , Fibroblastos/efectos de la radiación , Regeneración/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Adulto , Femenino , Fibroblastos/fisiología , Humanos , Masculino , Persona de Mediana Edad
6.
J Immunol Regen Med ; 8: 100028, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32494759

RESUMEN

Tissue repair and maintenance in adult organisms is dependent on the interactions between stem cells (SCs) and constituent cells of their microenvironment, or niche. Accumulating evidence suggests that immune cells, specifically Foxp3+ CD4+ Regulatory T cells (Tregs), play an important role as a regulator of the SC niche. Undisputedly, Tregs are the major immunosuppressive lineage of the CD4+ T cell compartment, and reside within numerous secondary lymphoid organs, where they exert their functions. These cells are also specialised in facilitating protective functions specific to their tissue of residence. In this review, we discuss the emerging concepts supporting the SC-regulatory functions of tissue-resident Tregs, during both the steady-state and SC-mediated regeneration. We highlight the skin, intestines, and lung as model organs which are subject to recurrent microinjury,exposure to microbiota, and constantly replenished by resident stem cell populations. An in-depth understanding of the biology of the Treg-SC axis will inform ongoing immunotherapeutic endeavours to target specific subpopulations of tissue-resident Tregs.

7.
Immunology ; 161(1): 4-17, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32463116

RESUMEN

Foxp3+  CD4+ regulatory T cells (Tregs) are an immune cell lineage endowed with immunosuppressive functionality in a wide array of contexts, including both anti-pathogenic and anti-self responses. In the past decades, our understanding of the functional diversity of circulating or lymphoid Tregs has grown exponentially. Only recently, the importance of Tregs residing within non-lymphoid tissues, such as visceral adipose tissue, muscle, skin and intestine, has been recognized. Not only are Tregs critical for influencing the kinetics and strength of immune responses, but the regulation of non-immune or parenchymal cells, also fall within the purview of tissue-resident or infiltrating Tregs. This review focuses on providing a systematic and comprehensive comparison of the molecular maintenance, local adaptation and functional specializations of Treg populations operating within different tissues.


Asunto(s)
Tolerancia Inmunológica/inmunología , Intestinos/inmunología , Grasa Intraabdominal/inmunología , Músculos/inmunología , Piel/inmunología , Linfocitos T Reguladores/inmunología , Autoinmunidad/inmunología , Humanos , Inflamación/inmunología , Inflamación/prevención & control , Intestinos/citología , Grasa Intraabdominal/citología , Músculos/citología , Tejido Parenquimatoso/citología , Tejido Parenquimatoso/inmunología , Piel/citología
8.
Immunity ; 50(3): 655-667.e4, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893588

RESUMEN

Restoration of barrier-tissue integrity after injury is dependent on the function of immune cells and stem cells (SCs) residing in the tissue. In response to skin injury, hair-follicle stem cells (HFSCs), normally poised for hair generation, are recruited to the site of injury and differentiate into cells that repair damaged epithelium. We used a SC fate-mapping approach to examine the contribution of regulatory T (Treg) cells to epidermal-barrier repair after injury. Depletion of Treg cells impaired skin-barrier regeneration and was associated with a Th17 inflammatory response and failed HFSC differentiation. In this setting, damaged epithelial cells preferentially expressed the neutrophil chemoattractant CXCL5, and blockade of CXCL5 or neutrophil depletion restored barrier function and SC differentiation after epidermal injury. Thus, Treg-cell regulation of localized inflammation enables HFSC differentiation and, thereby, skin-barrier regeneration, with implications for the maintenance and repair of other barrier tissues.


Asunto(s)
Diferenciación Celular/fisiología , Quimiocina CXCL5/metabolismo , Epidermis/metabolismo , Folículo Piloso/metabolismo , Interleucina-17/metabolismo , Regeneración/fisiología , Linfocitos T Reguladores/metabolismo , Animales , Células Epidérmicas/metabolismo , Células Epiteliales/metabolismo , Cabello/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre/metabolismo
9.
J Immunol ; 200(9): 3100-3108, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563179

RESUMEN

Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103+ dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103+ DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response.


Asunto(s)
Autoantígenos/inmunología , Autoinmunidad/inmunología , Células de Langerhans/inmunología , Linfocitos T/inmunología , Animales , Movimiento Celular/inmunología , Ganglios Linfáticos/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Transgénicos , Piel/citología , Piel/inmunología
10.
Immunology ; 152(3): 372-381, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28699278

RESUMEN

Foxp3+ CD4+ regulatory T (Treg) cells are a subset of immune cells that function to regulate tissue inflammation. Skin is one of the largest organs and is home to a large proportion of the body's Treg cells. However, relative to other tissues (such as the spleen and gastrointestinal tract) the function of Treg cells in skin is less well defined. Here, we review our understanding of how Treg cells migrate to skin and the cellular and molecular pathways required for their maintenance in this tissue. In addition, we outline what is known about the specialized functions of Treg cells in skin. Namely, the orchestration of stem cell-mediated hair follicle regeneration, augmentation of wound healing, and promoting adaptive immune tolerance to skin commensal microbes. A comprehensive understanding of the biology of skin Treg cells may lead to novel therapeutic approaches that preferentially target these cells to treat cutaneous autoimmunity, skin cancers and disorders of skin regeneration.


Asunto(s)
Enfermedades de la Piel/inmunología , Piel/inmunología , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa , Animales , Quimiotaxis de Leucocito , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Folículo Piloso/inmunología , Folículo Piloso/metabolismo , Interacciones Huésped-Patógeno , Humanos , Memoria Inmunológica , Fenotipo , Regeneración , Transducción de Señal , Piel/metabolismo , Piel/microbiología , Piel/patología , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/microbiología , Enfermedades de la Piel/patología , Células Madre/inmunología , Células Madre/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/microbiología , Cicatrización de Heridas
11.
Cell ; 169(6): 1119-1129.e11, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28552347

RESUMEN

The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of Tregs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs.


Asunto(s)
Folículo Piloso/citología , Células Madre/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Células Epiteliales/metabolismo , Folículo Piloso/metabolismo , Humanos , Inflamación/metabolismo , Proteína Jagged-1/metabolismo , Ratones
12.
Cell Host Microbe ; 21(4): 467-477.e5, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28343820

RESUMEN

Regulatory T cells (Tregs) are required to establish immune tolerance to commensal microbes. Tregs accumulate abruptly in the skin during a defined window of postnatal tissue development. However, the mechanisms mediating Treg migration to neonatal skin are unknown. Here we show that hair follicle (HF) development facilitates the accumulation of Tregs in neonatal skin and that upon skin entry these cells localize to HFs, a primary reservoir for skin commensals. Further, germ-free neonates had reduced skin Tregs indicating that commensal microbes augment Treg accumulation. We identified Ccl20 as a HF-derived, microbiota-dependent chemokine and found its receptor, Ccr6, to be preferentially expressed by Tregs in neonatal skin. The Ccl20-Ccr6 pathway mediated Treg migration in vitro and in vivo. Thus, HF morphogenesis, commensal microbe colonization, and local chemokine production work in concert to recruit Tregs into neonatal skin, thereby establishing this tissue Treg niche early in life.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Microbiota/inmunología , Morfogénesis , Piel/inmunología , Piel/microbiología , Simbiosis , Linfocitos T Reguladores/inmunología , Animales , Quimiocina CCL20/metabolismo , Folículo Piloso/inmunología , Folículo Piloso/microbiología , Tolerancia Inmunológica , Ratones , Receptores CCR6/metabolismo
13.
Oncotarget ; 8(69): 114156-114172, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29371976

RESUMEN

Triple-negative breast cancer (TNBC) represents a more aggressive and difficult subtype of breast cancer where responses to chemotherapy occur, but toxicity is significant and resistance often follows. Immunotherapy has shown promising results in various types of cancer, including breast cancer. Here, we investigated a new combination strategy where histone deacetylase inhibitors (HDACi) are applied with immune checkpoint inhibitors to improve immunotherapy responses in TNBC. Testing different epigenetic modifiers, we focused on the mechanisms underlying HDACi as priming modulators of immunotherapy. Tumor cells were co-cultured with human peripheral blood mononuclear cells (PBMCs) and flow cytometric immunophenotyping was performed to define the role of epigenetic priming in promoting tumor antigen presentation and immune cell activation. We found that HDACi up-regulate PD-L1 mRNA and protein expression in a time-dependent manner in TNBC cells, but not in hormone responsive cells. Focusing on TNBC, HDACi up-regulated PD-L1 and HLA-DR on tumor cells when co-cultured with PBMCs and down-regulated CD4+ Foxp3+ Treg in vitro. HDACi significantly enhanced the in vivo response to PD-1/CTLA-4 blockade in the triple-negative 4T1 breast cancer mouse model, the only currently available experimental system with functional resemblance to human TNBC. This resulted in a significant decrease in tumor growth and increased survival, associated with increased T cell tumor infiltration and a reduction in CD4+ Foxp3+ T cells in the tumor microenvironment. Overall, our results suggest a novel role for HDAC inhibition in combination with immune checkpoint inhibitors and identify a promising therapeutic strategy, supporting its further clinical evaluation for TNBC treatment.

14.
J Immunol ; 196(5): 2010-4, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26826250

RESUMEN

Foxp3-expressing regulatory T cells (Tregs) reside in tissues where they control inflammation and mediate tissue-specific functions. The skin of mice and humans contain a large number of Tregs; however, the mechanisms of how these cells function in skin remain largely unknown. In this article, we show that Tregs facilitate cutaneous wound healing. Highly activated Tregs accumulated in skin early after wounding, and specific ablation of these cells resulted in delayed wound re-epithelialization and kinetics of wound closure. Tregs in wounded skin attenuated IFN-γ production and proinflammatory macrophage accumulation. Upon wounding, Tregs induce expression of the epidermal growth factor receptor (EGFR). Lineage-specific deletion of EGFR in Tregs resulted in reduced Treg accumulation and activation in wounded skin, delayed wound closure, and increased proinflammatory macrophage accumulation. Taken together, our results reveal a novel role for Tregs in facilitating skin wound repair and suggest that they use the EGFR pathway to mediate these effects.


Asunto(s)
Receptores ErbB/inmunología , Linfocitos T Reguladores/inmunología , Cicatrización de Heridas/inmunología , Animales , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Subgrupos de Linfocitos T/inmunología
15.
Eur J Immunol ; 44(7): 2188-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24643793

RESUMEN

DC vaccines have been used to induce tumour-specific cytotoxic T cells . However, this approach to cancer immunotherapy has had limited success. To be successful, injected DCs need to migrate to the LNs where they can stimulate effector T cells . We and others have previously demonstrated by MRI that tumour antigen-pulsed-DCs labelled ex vivo with superparamagnetic iron oxide nanoparticles migrated to the draining LNs and are capable of activating antigen-specific T cells . The results from our study demonstrated that ex vivo superparamagnetic iron oxide nanoparticles-labelled and OVA-pulsed DCs prime cytotoxic CD8(+) T-cell responses to protect against a B16-OVA tumour challenge. In the clinic, a possible noninvasive surrogate marker for efficacy of DC vaccination is to image the specific migration and accumulation of T cells following DC vaccination.


Asunto(s)
Células Dendríticas/inmunología , Linfocitos T Citotóxicos/inmunología , Exametazima de Tecnecio Tc 99m , Vacunación , Animales , Ratones , Ratones Endogámicos BALB C , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
16.
J Clin Invest ; 123(4): 1457-74, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23454746

RESUMEN

Host-induced antibodies and their contributions to cancer inflammation are largely unexplored. IgG4 subclass antibodies are present in IL-10-driven Th2 immune responses in some inflammatory conditions. Since Th2-biased inflammation is a hallmark of tumor microenvironments, we investigated the presence and functional implications of IgG4 in malignant melanoma. Consistent with Th2 inflammation, CD22+ B cells and IgG4(+)-infiltrating cells accumulated in tumors, and IL-10, IL-4, and tumor-reactive IgG4 were expressed in situ. When compared with B cells from patient lymph nodes and blood, tumor-associated B cells were polarized to produce IgG4. Secreted B cells increased VEGF and IgG4, and tumor cells enhanced IL-10 secretion in cocultures. Unlike IgG1, an engineered tumor antigen-specific IgG4 was ineffective in triggering effector cell-mediated tumor killing in vitro. Antigen-specific and nonspecific IgG4 inhibited IgG1-mediated tumoricidal functions. IgG4 blockade was mediated through reduction of FcγRI activation. Additionally, IgG4 significantly impaired the potency of tumoricidal IgG1 in a human melanoma xenograft mouse model. Furthermore, serum IgG4 was inversely correlated with patient survival. These findings suggest that IgG4 promoted by tumor-induced Th2-biased inflammation may restrict effector cell functions against tumors, providing a previously unexplored aspect of tumor-induced immune escape and a basis for biomarker development and patient-specific therapeutic approaches.


Asunto(s)
Antineoplásicos/farmacología , Inmunoglobulina G/fisiología , Melanoma/inmunología , Neoplasias Cutáneas/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Polaridad Celular , Técnicas de Cocultivo , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/sangre , Interleucina-10/metabolismo , Interleucina-10/fisiología , Interleucina-4/metabolismo , Estimación de Kaplan-Meier , Metástasis Linfática , Masculino , Melanoma/sangre , Melanoma/mortalidad , Melanoma/secundario , Ratones , Persona de Mediana Edad , Receptores de IgG/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Células Th2/inmunología , Células Tumorales Cultivadas , Escape del Tumor , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Haematologica ; 98(8): 1291-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23242600

RESUMEN

Adoptive transfer of ex vivo expanded CD4(+)CD25(+)FOXP3(+) regulatory T cells is a successful therapy for autoimmune diseases and transplant rejection in experimental models. In man, equivalent manipulations in bone marrow transplant recipients appear safe, but questions regarding the stability of the transferred regulatory T cells during inflammation remain unresolved. In this study, protocols for the expansion of clinically useful numbers of functionally suppressive and stable human regulatory T cells were investigated. Regulatory T cells were expanded in vitro with rapamycin and/or all-trans retinoic acid and then characterized under inflammatory conditions in vitro and in vivo in a humanized mouse model of graft-versus-host disease. Addition of rapamycin to regulatory T-cell cultures confirms the generation of high numbers of suppressive regulatory T cells. Their stability was demonstrated in vitro and substantiated in vivo. In contrast, all-trans retinoic acid treatment generates regulatory T cells that retain the capacity to secrete IL-17. However, combined use of rapamycin and all-trans retinoic acid abolishes IL-17 production and confers a specific chemokine receptor homing profile upon regulatory T cells. The use of purified regulatory T-cell subpopulations provided direct evidence that rapamycin can confer an early selective advantage to CD45RA(+) regulatory T cells, while all-trans retinoic acid favors CD45RA(-) regulatory T-cell subset. Expansion of regulatory T cells using rapamycin and all-trans retinoic acid drug combinations provides a new and refined approach for large-scale generation of functionally potent and phenotypically stable human regulatory T cells, rendering them safe for clinical use in settings associated with inflammation.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Factores de Transcripción Forkhead , Subunidad alfa del Receptor de Interleucina-2 , Sirolimus/farmacología , Subgrupos de Linfocitos T/efectos de los fármacos , Tretinoina/farmacología , Traslado Adoptivo/métodos , Animales , Linfocitos T CD4-Positivos/inmunología , Factores de Transcripción Forkhead/inmunología , Humanos , Subunidad alfa del Receptor de Interleucina-2/inmunología , Ratones , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
18.
Gen Physiol Biophys ; 31(3): 299-307, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23047943

RESUMEN

REV5901 is an inhibitor of regulatory volume decrease (RVD) a mechanotransduction pathway regulating cell volume in response to hypotonicity, with protective properties upon chondrocyte trauma impact in situ. As the mechanism of action of REV5901 is unknown and changes in intracellular calcium ([Ca2+]i) have been linked to REV5901-loading, we investigated the effects of REV5901 on a known calcium signalling pathway. Upon REV5901 loading, there was significant increase in [Ca2+]i reaching 37.97 ± 5.67%, above basal levels which was reduced to 27.86 ± 3.15% in the presence of 2 mmol/l EGTA. In the presence of U73122 or neomycin there was a decrease in calcium with inhibition factors (I.F.) of 0.39 ± 0.09 and 0.37 ± 0.08, respectively, whereas rottlerin abolished the REV5901-induced [Ca2+]i rise. The role of calcium channels in contributing to the REV5901-induced calcium rise was investigated whereby the calcium rise was inhibited in the absence of extracellular sodium and by the addition of Gd3+ and Ruthenium red. These data show a phospholipase Cß3-dependent release of calcium from intracellular stores as well as a sodium calcium exchanger-mediated influx in response to REV5901 loading, suggesting a potential role for calcium signalling in mediating the action of REV5901 in chondrocytes.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Cartílago Articular/fisiología , Condrocitos/fisiología , Mecanotransducción Celular/fisiología , Quinolinas/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Cartílago Articular/citología , Cartílago Articular/efectos de los fármacos , Bovinos , Células Cultivadas , Condrocitos/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos
19.
PLoS One ; 7(8): e44219, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22937164

RESUMEN

The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.


Asunto(s)
Enfermedad Injerto contra Huésped/inmunología , Subunidad gamma Común de Receptores de Interleucina/genética , Inmunodeficiencia Combinada Grave/inmunología , Linfocitos T/inmunología , Animales , Femenino , Enfermedad Injerto contra Huésped/patología , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/trasplante , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Fenotipo , Inmunodeficiencia Combinada Grave/patología , Piel/inmunología , Piel/patología
20.
J Exp Med ; 209(5): 935-45, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22547651

RESUMEN

Human skin immune homeostasis, and its regulation by specialized subsets of tissue-residing immune sentinels, is poorly understood. In this study, we identify an immunoregulatory tissue-resident dendritic cell (DC) in the dermis of human skin that is characterized by surface expression of CD141, CD14, and constitutive IL-10 secretion (CD141(+) DDCs). CD141(+) DDCs possess lymph node migratory capacity, induce T cell hyporesponsiveness, cross-present self-antigens to autoreactive T cells, and induce potent regulatory T cells that inhibit skin inflammation. Vitamin D(3) (VitD3) promotes certain phenotypic and functional properties of tissue-resident CD141(+) DDCs from human blood DCs. These CD141(+) DDC-like cells can be generated in vitro and, once transferred in vivo, have the capacity to inhibit xeno-graft versus host disease and tumor alloimmunity. These findings suggest that CD141(+) DDCs play an essential role in the maintenance of skin homeostasis and in the regulation of both systemic and tumor alloimmunity. Finally, VitD3-induced CD141(+) DDC-like cells have potential clinical use for their capacity to induce immune tolerance.


Asunto(s)
Antígenos de Superficie/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Dermatitis/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Homeostasis/inmunología , Interleucina-10/inmunología , Células de Langerhans/inmunología , Linfocitos T Reguladores/inmunología , Análisis de Varianza , Animales , Colecalciferol/farmacología , Femenino , Humanos , Indoles , Subunidad gamma Común de Receptores de Interleucina/genética , Células de Langerhans/efectos de los fármacos , Células de Langerhans/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Trombomodulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...