Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34821549

RESUMEN

Human serum albumin (HSA) is the frontline antioxidant protein in blood with established anti-inflammatory and anticoagulation functions. Here, we report that COVID-19-induced oxidative stress inflicts structural damages to HSA and is linked with mortality outcome in critically ill patients. We recruited 39 patients who were followed up for a median of 12.5 days (1-35 days), among them 23 had died. Analyzing blood samples from patients and healthy individuals (n=11), we provide evidence that neutrophils are major sources of oxidative stress in blood and that hydrogen peroxide is highly accumulated in plasmas of non-survivors. We then analyzed electron paramagnetic resonance spectra of spin-labeled fatty acids (SLFAs) bound with HSA in whole blood of control, survivor, and non-survivor subjects (n=10-11). Non-survivors' HSA showed dramatically reduced protein packing order parameter, faster SLFA correlational rotational time, and smaller S/W ratio (strong-binding/weak-binding sites within HSA), all reflecting remarkably fluid protein microenvironments. Following loading/unloading of 16-DSA, we show that the transport function of HSA may be impaired in severe patients. Stratified at the means, Kaplan-Meier survival analysis indicated that lower values of S/W ratio and accumulated H2O2 in plasma significantly predicted in-hospital mortality (S/W≤0.15, 81.8% (18/22) vs. S/W>0.15, 18.2% (4/22), p=0.023; plasma [H2O2]>8.6 µM, 65.2% (15/23) vs. 34.8% (8/23), p=0.043). When we combined these two parameters as the ratio ((S/W)/[H2O2]) to derive a risk score, the resultant risk score lower than the mean (<0.019) predicted mortality with high fidelity (95.5% (21/22) vs. 4.5% (1/22), log-rank χ2=12.1, p=4.9×10-4). The derived parameters may provide a surrogate marker to assess new candidates for COVID-19 treatments targeting HSA replacements and/or oxidative stress.


Asunto(s)
COVID-19/mortalidad , Neutrófilos/fisiología , Estrés Oxidativo , Albúmina Sérica/efectos adversos , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Egipto/epidemiología , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Humanos , Peróxido de Hidrógeno/sangre , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Tiempo
2.
Sci Rep ; 9(1): 13748, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551501

RESUMEN

Triple-negative breast cancer (TNBC) subtype is among the most aggressive cancers with the worst prognosis and least therapeutic targetability while being more likely to spread and recur. Cancer transformations profoundly alter cellular metabolism by increasing glucose consumption via glycolysis to support tumorigenesis. Here we confirm that relative to ER-positive cells (MCF7), TNBC cells (MBA-MD-231) rely more on glycolysis thus providing a rationale to target these cells with glycolytic inhibitors. Indeed, iodoacetate (IA), an effective GAPDH inhibitor, caused about 70% drop in MDA-MB-231 cell viability at 20 µM while 40 µM IA was needed to decrease MCF7 cell viability only by 30% within 4 hours of treatment. However, the triple negative cells showed strong ability to recover after 24 h whereas MCF7 cells were completely eliminated at concentrations <10 µM. To understand the mechanism of MDA-MB-231 cell survival, we studied metabolic modulations associated with acute and extended treatment with IA. The resilient TNBC cell population showed a significantly greater count of cells with active mitochondria, lower apoptotic markers, normal cell cycle regulations, moderately lowered ROS, but increased mRNA levels of p27 and PARP1; all compatible with enhanced cell survival. Our results highlight an interplay between PARP and mitochondrial oxidative phosphorylation in TNBC that comes into play in response to glycolytic disruption. In the light of these findings, we suggest that combined treatment with PARP and mitochondrial inhibitors may provide novel therapeutic strategy against TNBC.


Asunto(s)
Glucólisis/fisiología , Mitocondrias/fisiología , Neoplasias de la Mama Triple Negativas/fisiopatología , Apoptosis/fisiología , Ciclo Celular/fisiología , Línea Celular Tumoral , Supervivencia Celular/fisiología , Femenino , Humanos , Células MCF-7 , Recurrencia Local de Neoplasia/fisiopatología , Fosforilación Oxidativa
3.
Proc Natl Acad Sci U S A ; 110(5): E387-96, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319652

RESUMEN

cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Corazón/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factor Inductor de la Apoptosis/metabolismo , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Células HeLa , Corazón/fisiopatología , Humanos , Peróxido de Hidrógeno/farmacología , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Mitocondrias Cardíacas/metabolismo , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas Nucleares/genética , Oxidantes/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley
4.
Nanomedicine ; 4(4): 283-94, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18656425

RESUMEN

Superoxide radical anion is a biologically important oxidant that has been linked to tissue injury and inflammation in several diseases. Here we carried out a structure-activity study on six different carboxyfullerene superoxide dismutase (SOD) mimetics with distinct electronic and biophysical characteristics. Neurotoxicity via N-methyl-D-aspartate receptors, which involves intracellular superoxide, was used as a model to evaluate structure-activity relationships between reactivity toward superoxide and neuronal rescue by these drugs. A significant correlation between neuroprotection by carboxyfullerenes and their ki toward superoxide radical was observed. Computer-assisted molecular modeling demonstrated that the reactivity toward superoxide is sensitive to changes in dipole moment, which are dictated not only by the number of carboxyl groups but also by their distribution on the fullerene ball. These results indicate that the SOD activity of these cell-permeable compounds predicts neuroprotection, and establishes a structure-activity relationship to aid in future studies on the biology of superoxide across disciplines.


Asunto(s)
Fulerenos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Superóxido Dismutasa/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Materiales Biomiméticos/farmacología , Células Cultivadas , Corteza Cerebral/citología , Depuradores de Radicales Libres/metabolismo , Fulerenos/química , Fulerenos/metabolismo , Ratones , Modelos Moleculares , Estructura Molecular , N-Metilaspartato/farmacología , Neuronas/citología , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Unión Proteica , Receptores de N-Metil-D-Aspartato/metabolismo , Relación Estructura-Actividad , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...