Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 352: 122872, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942361

RESUMEN

Aim Hepatic ischemia reperfusion injury (HIRI) is a leading cause of mortality post liver transplantation, hypovolemic shock and trauma. In this study, we tested, on molecular bases, the possible protective role of two different derivatives of 2-oxindole in a preclinical model of HIRI in rats. MAIN METHODS: HIRI was operated in male Wistar albino rats and prophylactic treatment with oxindole-curcumin (Coxi) or oxindole-vanillin (Voxi) was carried out before the operation. The biochemical and histopathological investigations, in addition to the mechanistic characterizations of the effect of the tested drugs were performed. KEY FINDINGS: HIRI was assured with elevated liver enzymes and marked changes in histopathological features, inflammatory response and oxidative stress. Pretreatment with Coxi and Voxi improved the hepatic histopathological alterations, reduced the elevated serum liver enzymes level and hepatic Malondialdehyde (MDA) content, increased the hepatic Superoxide Dismutase (SOD) activity and reduced Glutathione (GSH) content, downregulated the expression of TNF-α, IL-6, Nod-Like Receptor p3 (NLRP3), Cleaved caspase1, Cleaved caspase 3 proteins, alongside the expression level of IL-1ß, ICAM-1, VCAM-1 and BAX genes, attenuated NF-кB p-P65 Ser536 and Myeloperoxidase (MPO)-positive neutrophils, and activated the PI3K/AKT pathway. SIGNIFICANCE: Coxi and Voxi have promising hepatoprotective activity against HIRI in rats through ameliorating the biochemical and histopathological alterations, attenuating inflammatory and oxidative stress status by modulating the inflammatory TNF-α/ICAM-1, the pyroptosis NLRP3/Caspase-1, and the antioxidant PI3K/AKT pathways.

2.
Front Chem ; 12: 1387923, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800576

RESUMEN

A novel series of dihydropyrimidine/sulphonamide hybrids 3a-j with anti-inflammatory properties have been developed and tested as dual mPGES-1/5-LOX inhibitors. In vitro assay, results showed that compounds 3c, 3e, 3h, and 3j were the most effective dual inhibitors of mPGES-1 and 5-LOX activities. Compound 3j was the most potent dual inhibitor with IC50 values of 0.92 µM and 1.98 µM, respectively. In vivo, anti-inflammatory studies demonstrated that compounds 3c, 3e, 3h, and 3e had considerable anti-inflammatory activity, with EI% ranging from 29% to 71%. Compounds 3e and 3j were equivalent to celecoxib after the first hour but exhibited stronger anti-inflammatory effects than celecoxib after the third and fifth hours. Moreover, compounds 3e and 3j significantly reduced the levels of pro-inflammatory cytokines (PGE2, TNF-α, and IL-6) with gastrointestinal safety profiles. Molecular docking simulations explored the most potent derivatives' binding affinities and interaction patterns within mPGES-1 and 5-LOX active sites. This study disclosed that compound 3j is a promising anti-inflammatory lead with dual mPGES-1/5-LOX inhibition that deserves further preclinical investigation.

3.
Pharmaceuticals (Basel) ; 17(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794229

RESUMEN

Protein kinases regulate cellular activities and make up over 60% of oncoproteins and proto-oncoproteins. Among these kinases, FLT3 is a member of class III receptor tyrosine kinase family which is abundantly expressed in individuals with acute leukemia. Our previous oxindole-based hit has a particular affinity toward FLT3 (IC50 = 2.49 µM) and has demonstrated selectivity towards FLT3 ITD-mutated MV4-11 AML cells, with an IC50 of 4.3 µM. By utilizing the scaffold of the previous hit, sixteen new compounds were synthesized and screened against NCI-60 human cancer cell lines. This leads to the discovery of a potent antiproliferative compound, namely 5l, with an average GI50 value against leukemia and colon cancer subpanels equalling 3.39 and 5.97 µM, respectively. Screening against a specific set of 10 kinases that are associated with carcinogenesis indicates that compound 5l has a potent FLT3 inhibition (IC50 = 36.21 ± 1.07 nM). Remarkably, compound 5l was three times more effective as a CDK2 inhibitor (IC50 = 8.17 ± 0.32 nM) compared to sunitinib (IC50 = 27.90 ± 1.80 nM). Compound 5l was further analyzed by means of docking and molecular dynamics simulation for CDK2 and FLT3 active sites which provided a rational for the observed strong inhibition of kinases. These results suggest a novel structural scaffold candidate that simultaneously inhibits CDK2 and FLT3 and gives encouragement for further development as a potential therapeutic for leukemia and colon cancer.

4.
Bioorg Chem ; 145: 107234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412650

RESUMEN

Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRß, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRß active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.


Asunto(s)
Antineoplásicos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Sunitinib/farmacología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular
5.
BMC Chem ; 17(1): 73, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438819

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) mutation mechanisms are among the most common genetic abnormalities detected in about 30% of acute myeloid leukemia (AML) patients. These mutations are accompanied by poor clinical response, although all these progressions in identifying and interpreting biological AML bio-targets. Several small structured FLT3 inhibitors have been ameliorated to struggle against AML. Despite all these developments regarding these inhibitors, the Overall survival rate is about five years or more in less than one-third of diagnosed AML patients. Midostaurin was the first FDA-approved FLT3 inhibitor in 2017 in the United States and Europe for AML remedy. Next, Gilteritinib was an FDA-approved FLT3 inhibitor in 2018 and in the next year, Quizartinib was approved an as FLT3 inhibitor in Japan. Interestingly, indole-based motifs had risen as advantaged scaffolds with unusual multiple kinase inhibitory activity. This review summarises indole-based FLT3 inhibitors and related scaffolds, including FDA-approved drugs, clinical candidates, and other bioactive compounds. Furthermore, their chemotypes, mechanism of action, and interaction mode over both wild and mutated FLT3 target proteins had been judgmentally discussed. Therefore, this review could offer inspiring future perspectives into the finding of new FLT3-related AML therapies.

6.
Molecules ; 28(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446914

RESUMEN

Acute myeloid leukemia (AML) is one of the cancers that grow most aggressively. The challenges in AML management are huge, despite many treatment options. Mutations in FLT3 tyrosine kinase receptors make the currently available therapies less responsive. Therefore, there is a need to find new lead molecules that can specifically target mutated FLT3 to block growth factor signaling and inhibit AML cell proliferation. Our previous studies on FLT3-mutated AML cells demonstrated that ß-elemene and compound 5a showed strong inhibition of proliferation by blocking the mutated FLT3 receptor and altering the key apoptotic genes responsible for apoptosis. Furthermore, we hypothesized that both ß-elemene and compound 5a could be therapeutically effective. Therefore, combining these drugs against mutated FLT3 cells could be promising. In this context, dose-matrix combination-based cellular inhibition analyses, cell morphology studies and profiling of 43 different apoptotic protein targets via combinatorial treatment were performed. Our studies provide strong evidence for the hypothesis that ß-elemene and compound 5a combination considerably increased the therapeutic potential of both compounds by enhancing the activation of several key targets implicated in AML cell death.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Oxindoles/farmacología , Línea Celular Tumoral , Leucemia Mieloide Aguda/metabolismo , Mutación , Apoptosis , Tirosina Quinasa 3 Similar a fms/genética , Inhibidores de Proteínas Quinasas/farmacología
7.
ACS Omega ; 8(7): 6968-6981, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844536

RESUMEN

The structure-based design introduced indoles as an essential motif in designing new selective estrogen receptor modulators employed for treating breast cancer. Therefore, here, a series of synthesized vanillin-substituted indolin-2-ones were screened against the NCI-60 cancer cell panel followed by in vivo, in vitro, and in silico studies. Physicochemical parameters were evaluated with HPLC and SwissADME tools. The compounds demonstrated promising anti-cancer activity for the MCF-7 breast cancer cell line (GI = 6-63%). The compound with the highest activity (6j) was selective for the MCF-7 breast cancer cell line (IC50 = 17.01 µM) with no effect on the MCF-12A normal breast cell line supported by real-time cell analysis. A morphological examination of the used cell lines confirmed a cytostatic effect of compound 6j. It inhibited both in vivo and in vitro estrogenic activity, triggering a 38% reduction in uterine weight induced by estrogen in an immature rat model and hindering 62% of ER-α receptors in in vitro settings. In silico molecular docking and molecular dynamics simulation studies supported the stability of the ER-α and compound 6j protein-ligand complex. Herein, we report that indolin-2-one derivative 6j is a promising lead compound for further pharmaceutical formulations as a potential anti-breast cancer drug.

8.
Mol Divers ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790582

RESUMEN

New 3-substituted oxindole derivatives were designed and synthesized as antiproliferative agents. The antiproliferative activity of compounds 6a-j was evaluated against 60 NCI cell lines. Among these tested compounds, compounds 6f and 6g showed remarkable antiproliferative activity, specifically against leukemia and breast cancer cell lines. Compound 6f was the most promising antiproliferative agent against MCF-7 (human breast cancer) with an IC50 value of 14.77 µM compared to 5-fluorouracil (5FU) (IC50 = 2.02 µM). Notably, compound 6f hampered receptor tyrosine EGFR fundamentally with an IC50 value of 1.38 µM, compared to the reference sunitinib with an IC50 value of 0.08 µM. Moreover, compound 6f afforded anti-tubulin polymerization activity with an IC50 value of 7.99 µM as an outstanding observable activity compared with the reference combretastatin A4 with an IC50 value of 2.64 µM. In silico molecular-docking results of compound 6f in the ATP-binding site of EGFR agreed with the in vitro results. Besides, the investigation of the physicochemical properties of compound 6f via the egg-boiled method clarified good lipophilicity, GIT absorption, and blood-brain barrier penetration properties.

9.
Sci Rep ; 13(1): 2146, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750593

RESUMEN

Sirtuin 2 (SIRT2) is a member of the sirtuin protein family, which includes lysine deacylases that are NAD+-dependent and organize several biological processes. Different forms of cancer have been associated with dysregulation of SIRT2 activity. Hence, identifying potent inhibitors for SIRT2 has piqued considerable attention in the drug discovery community. In the current study, the Natural Products Atlas (NPAtlas) database was mined to hunt potential SIRT2 inhibitors utilizing in silico techniques. Initially, the performance of the employed docking protocol to anticipate ligand-SIRT2 binding mode was assessed according to the accessible experimental data. Based on the predicted docking scores, the most promising NPAtlas molecules were selected and submitted to molecular dynamics (MD) simulations, followed by binding energy computations. Based on the MM-GBSA binding energy estimations over a 200 ns MD course, three NPAtlas compounds, namely NPA009578, NPA006805, and NPA001884, were identified with better ΔGbinding towards SIRT2 protein than the native ligand (SirReal2) with values of - 59.9, - 57.4, - 53.5, and - 49.7 kcal/mol, respectively. On the basis of structural and energetic assessments, the identified NPAtlas compounds were confirmed to be steady over a 200 ns MD course. The drug-likeness and pharmacokinetic characteristics of the identified NPAtlas molecules were anticipated, and robust bioavailability was predicted. Conclusively, the current results propose potent inhibitors for SIRT2 deserving more in vitro/in vivo investigation.


Asunto(s)
Antineoplásicos , Sirtuina 2 , Sirtuina 2/metabolismo , Relación Estructura-Actividad , Ligandos , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular
10.
Arch Pharm (Weinheim) ; 356(2): e2200407, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36403191

RESUMEN

FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-ß. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Oxindoles , Tirosina Quinasa 3 Similar a fms , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Oxindoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Relación Estructura-Actividad
11.
RSC Adv ; 12(30): 19505-19511, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35865563

RESUMEN

In late December 2019, a pandemic coronavirus disease 2019 (COVID-19) emerged in Wuhan, China and spread all over the globe. One of the promising therapeutic techniques of viral infection is to search for enzyme inhibitors among natural phytochemicals using molecular docking to obtain leads with the least side effects. The COVID-19 virus main protease (Mpro) is considered as an attractive target due to its pivotal role in controlling viral transcription and replication. Metabolic profiling of the crude extract of Livistona decipiens Becc. (Arecaceae) leaves and fruit dereplicated twelve metabolites using LC-HRESIMS. Molecular docking simulation and in silico ADME profiling of these annotated compounds proposed that tricin is a promising lead against COVID-19 virus Mpro. The alcoholic extract was shown to inhibit SARS-CoV-2 through in vitro culture and RT-PCR testing with EC50 = 0.122 and 1.53 µg mL-1 for leaves and fruit extracts, respectively, when compared with that of the FDA-approved anti-COVID-19 remdesivir (0.002 µg mL-1). Preliminary steps were also performed including the 3CL-protease inhibition assay and cytotoxicity study. It is worthwhile to find a cheap, safe, natural source for promising anti-SARS-CoV-2 agents that can be further tested in vivo against the COVID-19 virus Mpro. This study provides scientific basis for demonstrating beneficial effects of L. decipiens application on human health during the corona pandemic.

12.
Int J Mol Sci ; 23(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35563439

RESUMEN

Cancer metastasis accounts for most of the mortality associated with solid tumors. However, antimetastatic drugs are not available on the market. One of the important biological events leading to metastasis is the epithelial to mesenchymal transition (EMT) induced by cytokines, namely transforming growth-factor-ß (TGF-ß). Although several classes of inhibitors targeting TGF-ß and its receptor have been developed, they have shown profound clinical side effects. We focused on our synthetic compound, HPH-15, which has shown anti-fibrotic activity via the blockade of the TGF-ß Smad-dependent signaling. In this study, 10 µM of HPH-15 was found to exhibit anti-cell migration and anti-EMT activities in non-small-cell lung cancer (NSCLC) cells. Although higher concentrations are required, the anti-EMT activity of HPH-15 has also been observed in 3D-cultured NSCLC cells. A mechanistic study showed that HPH-15 inhibits downstream TGF-ß signaling. This downstream inhibition blocks the expression of cytokines such as TGF-ß, leading to the next cycle of Smad-dependent and -independent signaling. HPH-15 has AMPK-activation activity, but a relationship between AMPK activation and anti-EMT/cell migration was not observed. Taken together, HPH-15 may lead to the development of antimetastatic drugs with a new mechanism of action.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Transición Epitelial-Mesenquimal , Transducción de Señal , Factor de Crecimiento Transformador beta , Proteínas Quinasas Activadas por AMP , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factores de Crecimiento Transformadores
13.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35455423

RESUMEN

The inhibition of glycogen synthase kinase 3ß (GSK3ß) activity through pharmacological intervention represents a promising approach for treating challenging neurodegenerative disorders like Alzheimer's disease. Similarly, abnormal tau aggregate accumulation in neurons is a hallmark of various neurodegenerative diseases. We introduced new dual GSK3ß/tau aggregation inhibitors due to the excellent clinical outcome of multitarget drugs. Compound (E)-2f stands out among the synthesized inhibitors as a promising GSK3ß inhibitor (IC50 1.7 µM) with a pronounced tau anti-aggregation effect in a cell-based model of tauopathy. Concurrently, (E)-2f was demonstrated to be non-toxic to normal cells, making it a promising neuroprotective lead compound that needs further investigation.

14.
RSC Adv ; 12(5): 2992-3002, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35425294

RESUMEN

In the current study, an investigation of the activity of the total extract of the marine sponge Spongia irregularis and its different fractions against the hepatitis C virus (HCV) was pursued. The results revealed that the ethyl acetate fraction exhibited the highest anti-HCV activity, with an IC50 value of 12.6 ± 0.05 µg ml-1. Chromatographic resolution of the ethyl acetate fraction resulted in the isolation of four known compounds, 1,3,7-trimethylguanine (1), 3,5-dihydroxyfuran-2(5H)-one (2), thymidine (3), and 1H-indazole (4). By using LC-HR-ESI-MS metabolic profiling, compounds 5-14 were also identified in the same fraction. Molecular docking calculations revealed the high binding affinity of compound 14 against the allosteric pocket of HCV NS3-NS4A and the active site of HCV NS3 helicase (-10.1 and -7.4 kcal mol-1, respectively). Molecular dynamics simulations, followed by molecular mechanics-generalized Born surface area energy calculations, demonstrated the structural and energetic stability of compound 14 in complex with HCV targets.

15.
Nat Prod Res ; 36(5): 1391-1395, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33487065

RESUMEN

The current biologically guided study aimed the in vitro investigation of cytotoxic activity, identification of the phytochemical content of Moluccella laevis L. aerial parts and supporting this activity by a molecular docking study. Aqueous fraction demonstrated the most potent cytotoxic effect against CACO-2 with IC50 = 0.067 ± 0.01 µg/mL. Furthermore, EtOAc fraction showed a remarkable cytotoxic activity against MCF-7 cell line with IC50 = 0.35 ± 0.02 µg/mL. Consequently, total ethanolic extract (TEE) and its fractions were subjected to LC-HR-ESI-MS metabolic profiling to discover the constituents that possibly underlie their cytotoxicity. Twenty compounds were tentatively identified from metabolic analysis. Furthermore, eight compounds were isolated. In silico docking study revealed that stachydrine is more likely to account for the antiproliferative activity of both EtOAc and aqueous fractions, probably via its moderate inhibition of receptor tyrosine kinases. [Formula: see text].


Asunto(s)
Lamiaceae , Células CACO-2 , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/análisis , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química
16.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34832895

RESUMEN

A series of 3-benzylideneindolin-2-one compounds was designed and synthesized based on combretastatin A-4 and compound IC261, a dual casein kinase (CK1)/tubulin polymerization inhibitor, taking into consideration the pharmacophore required for EGFR-tyrosine kinase inhibition. The new molecular entities provoked significant growth inhibition against PC-3, MCF-7 and COLO-205 at a 10 µM dose. Compounds 6-chloro-3-(2,4,6-trimethoxybenzylidene) indolin-2-one, 4b, and 5-methoxy-3-(2,4,6-trimethoxybenzylidene)indolin-2-one, 4e, showed potent activity against the colon cancer COLO-205 cell line with an IC50 value of 0.2 and 0.3 µM. A mechanistic study demonstrated 4b's efficacy in inhibiting microtubule assembly (IC50 = 1.66 ± 0.08 µM) with potential binding to the colchicine binding site (docking study). With an IC50 of 1.92 ± 0.09 µg/mL, 4b inhibited CK1 almost as well as IC261. Additionally, 4b and 4e were effective inhibitors of EGFR-TK with IC50s of 0.19 µg/mL and 0.40 µg/mL compared to Gifitinib (IC50 = 0.05 µg/mL). Apoptosis was induced in COLO-205 cells treated with 4b, with apoptotic markers dysregulated. Caspase 3 levels were elevated to more than three-fold, while Cytochrome C levels were doubled. The cell cycle was arrested in the pre-G1 phase with extensive cellular accumulation in the pre-G1 phase, confirming apoptosis induction. Levels of cell cycle regulating proteins BAX and Bcl-2 were also defective. The binding interaction patterns of these compounds at the colchicine binding site of tubulin and the Gifitinib binding site of EGFR were verified by molecular docking, which adequately matched the reported experimental result. Hence, 4b and 4e are considered promising potent multitarget agents against colon cancer that require optimization.

17.
Eur J Med Chem ; 224: 113709, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34303869

RESUMEN

Sirtuin 2 (SIRT2) is a member of the human sirtuins, which regulates various biological processes and is deemed as a novel biomarker for different cancers. Depending on the tumor type, SIRT2 knockout leads to a controversial role in tumorigenesis, however, pharmacological inhibition of SIRT2 results exclusively in growth inhibition of various cancer cells. In this respect, selective SIRT2 inhibitors hold therapeutic promise in a wide range of tumors. The literature has a batch of successful stories of SIRT2 modulators discovery. This review presents our perspective on the up-to-date selective SIRT2 inhibitors and their antiproliferative activity.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Sirtuina 2/antagonistas & inhibidores , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Neoplasias/patología , Sirtuina 2/metabolismo
18.
RSC Adv ; 11(52): 32740-32749, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35493564

RESUMEN

Chemical investigation of Aptenia cordifolia roots extract, using chromatographic and spectroscopic techniques, resulted in isolation and identification of eight known compounds. The basic ethyl acetate fraction (alkaloidal fraction) afforded O-methylsceletenone, epinine, 4-methoxy phenethylamine, and N-methyl tyramine while, the acidic ethyl acetate fraction (non-alkaloidal fraction) afforded only cis-N-coumaroyl tyramine. Moreover, the petroleum ether fraction afforded capric acid, tricosanol, and a mixture of ß-sitosterol & stigma sterol. Upon screening of anti HCV activity of these three fractions, only the basic ethyl acetate fraction had high activity against HCV with an IC50 value equal to 2.4 µg mL-1 which provoked us to carry out structure based in silico virtual screening on the drug targets of HCV of isolated alkaloidal compounds as well as the previously dereplicated alkaloids through metabolomics from the antiviral active fraction. The tortuosamine compound exhibited the strongest binding to the active site of NS3/4A helicase with a binding affinity (-7.1 kcal mol-1) which is very close to the native ligand (-7.7 kcal mol-1).

19.
Nat Prod Res ; 35(23): 5493-5497, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32608262

RESUMEN

Depression is a common mental disturbance that can be categorized as mild, moderate or severe. Mesemberine alkaloids, the main recognized phytoconstituents of some plants belonging to family Mesembryanthemaceae, are well-known as serotonin reuptake inhibitors. Therefore, the objective of this study is to evaluate the antidepressant activity of the alkaloidal fraction of Mesembryanthemum cordifolium L.f. (Aptenia cordifolia) roots, family Mesembryanthemaceae using forced swimming test, assisted by metabolomic analysis and in silico ligand-based and structure-based screening. Results showed that the alkaloidal fraction displayed an antidepressant activity superior to imipramine hydrochloride, a standard antidepressant agent. Nine alkaloids were annotated from the metabolomic analysis. Interestingly, among the dereplicated constituents, mesembrane (5) displayed strong binding affinity to SERT protein, which is slightly higher than the antidepressant drug venlafaxine. In conclusion, the alkaloidal fraction of the M. cordifolium (A. cordifolia) root exhibits an antidepressant activity which can be attributed in part to mesembrane (5).


Asunto(s)
Mesembryanthemum , Antidepresivos/farmacología , Depresión , Natación
20.
Molecules ; 25(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171861

RESUMEN

Epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) are crucial targetable enzymes in cancer management. Therefore, herein, new 2-[(5-((1H-indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(thiazol/benzothiazol-2-yl)acetamides (2a-i) were designed and synthesized as EGFR and COX-2 inhibitors. The cytotoxic effects of compounds 2a-i on HCT116 human colorectal carcinoma, A549 human lung adenocarcinoma, and A375 human melanoma cell lines were determined using MTT assay. 2-[(5-((1H-Indol-3-yl)methyl)-1,3,4-oxadiazol-2-yl)thio]-N-(6-ethoxybenzothiazol-2-yl)acetamide (2e) exhibited the most significant anticancer activity against HCT116, A549, and A375 cell lines with IC50 values of 6.43 ± 0.72 µM, 9.62 ± 1.14 µM, and 8.07 ± 1.36 µM, respectively, when compared with erlotinib (IC50 = 17.86 ± 3.22 µM, 19.41 ± 2.38 µM, and 23.81 ± 4.17 µM, respectively). Further mechanistic assays demonstrated that compound 2e enhanced apoptosis (28.35%) in HCT116 cells more significantly than erlotinib (7.42%) and caused notable EGFR inhibition with an IC50 value of 2.80 ± 0.52 µM when compared with erlotinib (IC50 = 0.04 ± 0.01 µM). However, compound 2e did not cause any significant COX-2 inhibition, indicating that this compound showed COX-independent anticancer activity. The molecular docking study of compound 2e emphasized that the benzothiazole ring of this compound occupied the allosteric pocket in the EGFR active site. In conclusion, compound 2e is a promising EGFR inhibitor that warrants further clinical investigations.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Indoles/farmacología , Oxadiazoles/farmacología , Células A549 , Sitio Alostérico , Animales , Apoptosis , Benzotiazoles/química , Dominio Catalítico , Línea Celular Tumoral , Ciclooxigenasa 1/química , Ciclooxigenasa 2/química , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Células HCT116 , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Estructura Molecular , Ovinos , Relación Estructura-Actividad , Tiazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...