Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Saudi Pharm J ; 31(9): 101702, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37533493

RESUMEN

Scopolamine is a well-known pharmacological agent responsible for causing memory impairment in animals, as well as oxidative stress and neuroinflammation inducer which lead to the development of Alzheimer disease. Although a cure for Alzheimer's disease is unavailable. Ranuncoside, a metabolite obtained from a medicinal plant has demonstrated antioxidant and anti-inflammatory properties in vitro, making it a promising treatment with potential anti-Alzheimer disease properties. However, as ranuncoside has not been evaluated for its antioxidant and anti-neuroinflammatory properties in any in vivo model, our study aimed to evaluate its neurotherapeutic efficacy against scopolamine-induced memory impairment in adult male albino mice. Mice were randomly divided into four experimental groups. Mice of group I was injected with saline, group II was injected with scopolamine (1 mg/kg/day) for 3 weeks. After receiving a daily injection of scopolamine for 1 week, the mice of group III were injected with ranuncoside (10 mg/kg) every other day for 2 weeks along with scopolamine daily and group IV were injected with ranuncoside on 5th alternate days. Behavioral tests (i.e., Morris water maze and Y-maze) were performed to determine the memory-enhancing effect of ranuncoside against scopolamine's memory deleterious effect. Western blot analysis was also performed to further elucidate the anti-neuroinflammatory and antioxidant effects of ranuncoside against scopolamine-induced neuroinflammation and oxidative stress. Our results showed memory-enhancing, anti-neuroinflammatory effect, and antioxidant effects of ranuncoside against scopolamine by increasing the expression of the endogenous antioxidant system (i.e., Nrf2 and HO-1), followed by blocking neuroinflammatory markers such as NF-κB, COX-2, and TNF-α. The results also revealed that ranuncoside possesses hypoglycemic and hypolipidemic effects against scopolamine-induced hyperglycemia and hyperlipidemia in mice as well as scopolamine's hyperglycemic effect. In conclusion, our findings suggest that ranuncoside could be a potential agent for the management of Alzheimer's disease, hyperglycemia, and hyperlipidemia.

2.
Mol Neurobiol ; 48(1): 257-69, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23645118

RESUMEN

Here, we investigated the possible involvement of gamma-aminobutyric acid B1 receptor (GABAB1R) in mediating the protective effects of black soybean anthocyanins against ethanol-induced apoptosis in prenatal hippocampal neurons because GABARs are known to play an important role in the development of central nervous system. Treatments were performed on primary cultures of prenatal rat hippocampal neurons transfected with or without GABAB1R small interfering RNA (siRNA). The results showed that, when ethanol treatment was followed by anthocyanins treatment, cellular levels of proapoptotic proteins such as Bax, activated caspase-3, and cleaved poly (ADP-ribose) polymerase 1 (PARP-1) were decreased, and the cellular level of the antiapoptotic protein Bcl-2 was increased compared to treatment with ethanol alone. Furthermore, the effects of ethanol on cellular levels of GABAB1R and its downstream signaling molecules such as protein kinase A, calcium/calmodulin-dependent protein kinase II (CaMKII), and phosphorylated cAMP response element binding protein were diminished or reversed by anthocyanins treatment. The ability of anthocyanins to reverse the effects of ethanol on cellular levels of Bax, Bcl-2, active caspase-3, cleaved PARP-1, GABAB1R, and CaMKII were abrogated in cells transfected with GABAB1R siRNA. In a GABAB1R-dependent manner, anthocyanins also inhibited the ability of ethanol to elevate intracellular free Ca(2+) level and increase the proportion of cells with low mitochondrial membrane potential in the population. Cell apoptosis assay and morphological studies also confirmed the neuroprotective effect of anthocyanins against ethanol via GABAB1R. Our data suggest that GABAB1R plays an important role in the neuroprotective effects of anthocyanins against ethanol.


Asunto(s)
Antocianinas/farmacología , Apoptosis/efectos de los fármacos , Hipocampo/patología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Receptores de GABA-B/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Calcio/metabolismo , Forma de la Célula/efectos de los fármacos , Etanol , Femenino , Feto/efectos de los fármacos , Feto/metabolismo , Hipocampo/embriología , Homeostasis/efectos de los fármacos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Degeneración Nerviosa/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...