Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531482

RESUMEN

The cytosolic dipeptidyl-aminopeptidase 9 (DPP9) cleaves protein N-termini post-proline or -alanine. Our analysis of DPP9 mRNA expression from the TCGA 'breast cancer' data set revealed that low/intermediate DPP9 levels are associated with poor overall survival of breast cancer patients. To unravel the impact of DPP9 on breast cancer development and progression, the transgenic MMTV-PyMT mouse model of metastasizing breast cancer was used. In addition, tissue- and time-controlled genetic deletion of DPP9 by the Cre-loxP recombination system was done. Despite a delay of tumor onset, a higher number of lung metastases were measured in DPP9-deficient mice compared to controls. In human mammary epithelial cells with oncogenic RAS pathway activation, DPP9 deficiency delayed tumorigenic transformation and accelerated TGF-ß1 induced epithelial-to-mesenchymal transition (EMT) of spheroids. For further analysis of the mechanism, primary breast tumor cells were isolated from the MMTV-PyMT model. DPP9 deficiency in these cells caused cancer cell migration and invasion accompanied by EMT. In absence of DPP9, the EMT transcription factor ZEB1 was stabilized due to insufficient degradation by the proteasome. In summary, low expression of DPP9 appears to decelerate mammary tumorigenesis but favors EMT and metastasis, which establishes DPP9 as a novel dynamic regulator of breast cancer initiation and progression.


Asunto(s)
Neoplasias de la Mama , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Transición Epitelial-Mesenquimal , Animales , Humanos , Femenino , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/metabolismo , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Línea Celular Tumoral , Ratones Noqueados , Ratones Transgénicos
2.
Cell Rep ; 42(10): 113256, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37847590

RESUMEN

It is widely assumed that all normal somatic cells can equally perform homologous recombination (HR) and non-homologous end joining in the DNA damage response (DDR). Here, we show that the DDR in normal mammary gland inherently depends on the epithelial cell lineage identity. Bioinformatics, post-irradiation DNA damage repair kinetics, and clonogenic assays demonstrated luminal lineage exhibiting a more pronounced DDR and HR repair compared to the basal lineage. Consequently, basal progenitors were far more sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis) in both mouse and human mammary epithelium. Furthermore, PARPi sensitivity of murine and human breast cancer cell lines as well as patient-derived xenografts correlated with their molecular resemblance to the mammary progenitor lineages. Thus, mammary epithelial cells are intrinsically divergent in their DNA damage repair capacity and PARPi vulnerability, potentially influencing the clinical utility of this targeted therapy.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Animales , Ratones , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antineoplásicos/farmacología , Reparación del ADN , Recombinación Homóloga , Daño del ADN
4.
J Pathol ; 261(4): 413-426, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37768107

RESUMEN

Integration and mining of bioimaging data remains a challenge and lags behind the rapidly expanding digital pathology field. We introduce Hourglass, an open-access analytical framework that streamlines biology-driven visualization, interrogation, and statistical assessment of multiparametric datasets. Cognizant of tissue and clinical heterogeneity, Hourglass systematically organizes observations across spatial and global levels and within patient subgroups. Applied to an extensive bioimaging dataset, Hourglass promptly consolidated a breadth of known interleukin-6 (IL-6) functions via its downstream effector STAT3 and uncovered a so-far unknown sexual dimorphism in the IL-6/STAT3-linked intratumoral T-cell response in human pancreatic cancer. As an R package and cross-platform application, Hourglass facilitates knowledge extraction from multi-layered bioimaging datasets for users with or without computational proficiency and provides unique and widely accessible analytical means to harness insights hidden within heterogeneous tissues at the sample and patient level. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Interleucina-6 , Neoplasias Pancreáticas , Humanos , Interleucina-6/genética , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Reino Unido , Factor de Transcripción STAT3/genética
5.
Cell ; 184(22): 5577-5592.e18, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34644529

RESUMEN

Intratumoral heterogeneity is a critical frontier in understanding how the tumor microenvironment (TME) propels malignant progression. Here, we deconvolute the human pancreatic TME through large-scale integration of histology-guided regional multiOMICs with clinical data and patient-derived preclinical models. We discover "subTMEs," histologically definable tissue states anchored in fibroblast plasticity, with regional relationships to tumor immunity, subtypes, differentiation, and treatment response. "Reactive" subTMEs rich in complex but functionally coordinated fibroblast communities were immune hot and inhabited by aggressive tumor cell phenotypes. The matrix-rich "deserted" subTMEs harbored fewer activated fibroblasts and tumor-suppressive features yet were markedly chemoprotective and enriched upon chemotherapy. SubTMEs originated in fibroblast differentiation trajectories, and transitory states were notable both in single-cell transcriptomics and in situ. The intratumoral co-occurrence of subTMEs produced patient-specific phenotypic and computationally predictable heterogeneity tightly linked to malignant biology. Therefore, heterogeneity within the plentiful, notorious pancreatic TME is not random but marks fundamental tissue organizational units.


Asunto(s)
Neoplasias Pancreáticas/patología , Microambiente Tumoral , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Diferenciación Celular , Proliferación Celular , Epitelio/patología , Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Fenotipo , Células del Estroma/patología , Análisis de Supervivencia , Microambiente Tumoral/inmunología
6.
Blood Adv ; 5(20): 3960-3974, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34500457

RESUMEN

Bone marrow (BM) is the primary site of hematopoiesis and is responsible for a lifelong supply of all blood cell lineages. The process of hematopoiesis follows key intrinsic programs that also integrate instructive signals from the BM niche. First identified as an erythropoietin-potentiating factor, the tissue inhibitor of metalloproteinase (TIMP) protein family has expanded to 4 members and has widely come to be viewed as a classical regulator of tissue homeostasis. By virtue of metalloprotease inhibition, TIMPs not only regulate extracellular matrix turnover but also control growth factor bioavailability. The 4 mammalian TIMPs possess overlapping enzyme-inhibition profiles and have never been studied for their cumulative role in hematopoiesis. Here, we show that TIMPs are critical for postnatal B lymphopoiesis in the BM. TIMP-deficient mice have defective B-cell development arising at the pro-B-cell stage. Expression analysis of TIMPless hematopoietic cell subsets pointed to an altered B-cell program in the Lineage-Sca-1+c-Kit+ (LSK) cell fraction. Serial and competitive BM transplants identified a defect in TIMP-deficient hematopoietic stem and progenitor cells for B lymphopoiesis. In parallel, reverse BM transplants uncovered the extrinsic role of stromal TIMPs in pro- and pre-B-cell development. TIMP deficiency disrupted CXCL12 localization to LepR+ cells, and increased soluble CXCL12 within the BM niche. It also compromised the number and morphology of LepR+ cells. These data provide new evidence that TIMPs control the cellular and biochemical makeup of the BM niche and influence the LSK transcriptional program required for optimal B lymphopoiesis.


Asunto(s)
Células de la Médula Ósea , Médula Ósea , Animales , Linfocitos B , Hematopoyesis , Ratones , Inhibidores Tisulares de Metaloproteinasas/genética
7.
Nat Metab ; 3(5): 665-681, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34031589

RESUMEN

Cancer metabolism adapts the metabolic network of its tissue of origin. However, breast cancer is not a disease of a single origin. Multiple epithelial populations serve as the culprit cell of origin for specific breast cancer subtypes, yet our knowledge of the metabolic network of normal mammary epithelial cells is limited. Using a multi-omic approach, here we identify the diverse metabolic programmes operating in normal mammary populations. The proteomes of basal, luminal progenitor and mature luminal cell populations revealed enrichment of glycolysis in basal cells and of oxidative phosphorylation in luminal progenitors. Single-cell transcriptomes corroborated lineage-specific metabolic identities and additional intra-lineage heterogeneity. Mitochondrial form and function differed across lineages, with clonogenicity correlating with mitochondrial activity. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed lineage-rooted metabolic vulnerabilities of mammary progenitors. Bioinformatics indicated breast cancer subtypes retain metabolic features of their putative cell of origin. Thus, lineage-rooted metabolic identities of normal mammary cells may underlie breast cancer metabolic heterogeneity and targeting these vulnerabilities could advance breast cancer therapy.


Asunto(s)
Linaje de la Célula , Metabolismo Energético , Células Epiteliales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Animales , Biomarcadores , Biología Computacional/métodos , Femenino , Citometría de Flujo/métodos , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/citología , Redes y Vías Metabólicas , Mitocondrias/genética , Mitocondrias/metabolismo , Proteoma , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...