Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 26(21): 27058-27063, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30469780

RESUMEN

Light routing and manipulation are important aspects of integrated optics. They essentially rely on beam splitters which are at the heart of interferometric setups and active routing. The most common implementations of beam splitters suffer either from strong dispersive response (directional couplers) or tight fabrication tolerances (multimode interference couplers). In this paper we fabricate a robust and simple broadband integrated beam splitter based on lithium niobate with a splitting ratio achromatic over more than 130 nm. Our architecture is based on spatial adiabatic passage, a technique originally used to transfer entirely an optical beam from a waveguide to another one that has been shown to be remarkably robust against fabrication imperfections and wavelength dispersion. Our device shows a splitting ratio of 0.52±0.03 and 0.48±0.03 from 1500 nm up to 1630 nm. Furthermore, we show that suitable design enables the splitting in output beams with relative phase 0 or π. Thanks to their independence to material dispersion, these devices represent simple, elementary components to create achromatic and versatile photonic circuits.

2.
Sci Rep ; 3: 2032, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23783585

RESUMEN

Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80 ± 4%, which paves the way to hybrid universal quantum networks.

3.
Opt Express ; 17(2): 1033-41, 2009 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-19158921

RESUMEN

We report the realization of a new polarization entangled photon-pair source based on a titanium-indiffused waveguide integrated on periodically poled lithium niobate pumped by a CW laser at 655 nm. The paired photons are emitted at the telecom wavelength of 1310 nm within a bandwidth of 0.7 nm. The quantum properties of the pairs are measured using a two-photon coalescence experiment showing a visibility of 85%. The evaluated source brightness, on the order of 10(5) pairs s(-1)GHz(-1)mW(-1), associated with its compactness and reliability, demonstrates the source's high potential for long-distance quantum communication.

4.
Nature ; 437(7055): 116-20, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16136138

RESUMEN

Quantum communication requires the transfer of quantum states, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent.

5.
Opt Lett ; 30(12): 1539-41, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16007800

RESUMEN

We report on a guided-wave asynchronous heralded single-photon source based on the creation of nondegenerate photon pairs by spontaneous parametric downconversion in a periodically poled lithium niobate wave-guide. We show that, by use of the signal photon at 1310 nm as a trigger, a gated detection process permits announcement of the arrival of single photons at 1550 nm at the output of a single-mode optical fiber with a high probability of 0.37. At the same time the multiphoton emission probability is reduced by a factor of 10 compared with Poissonian light sources. Furthermore, the model we have developed to calculate those figures of merit is shown to be accurate. This study can therefore serve as a paradigm for the conception of new quantum communication and computation networks.

6.
Opt Express ; 13(19): 7572-82, 2005 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-19498783

RESUMEN

We demonstrate a picosecond source of correlated photon pairs using a micro-structured fibre with zero dispersion around 715 nm wavelength. The fibre is pumped in the normal dispersion regime at ~708 nm and phase matching is satisfied for widely spaced parametric wavelengths. Here we generate up to 10;7 photon pairs per second in the fibre at wavelengths of 587 nm and 897 nm, while on collecting this light in single-mode-fibre-coupled Silicon avalanche diode photon counting detectors, we detect ~3.2x10;5 coincidences per second at pump power 0.5 mW.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA