Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 56(22): 13679-13696, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29099179

RESUMEN

The synthesis and characterization of Pt(II) (1 and 2) and Ru(II) arene (3 and 4) or polypyridine (5 and 6) complexes is described. With the aim of having a functional group to form bioconjugates, one uncoordinated carboxyl group has been introduced in all complexes. Some of the complexes were selected for their potential in photodynamic therapy (PDT). The molecular structures of complexes 2 and 5, as well as that of the sodium salt of the 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine ligand (cptpy), were determined by X-ray diffraction. Different techniques were used to evaluate the binding capacity to model DNA molecules, and MTT cytotoxicity assays were performed against four cell lines. Compounds 3, 4, and 5 showed little tendency to bind to DNA and exhibited poor biological activity. Compound 2 behaves as bonded to DNA probably through a covalent interaction, although its cytotoxicity was very low. Compound 1 and possibly 6, both of which contain a cptpy ligand, were able to intercalate with DNA, but toxicity was not observed for 6. However, compound 1 was active in all cell lines tested. Clonogenic assays and apoptosis induction studies were also performed on the PC-3 line for 1. The photodynamic behavior for complexes 1, 5, and 6 indicated that their nuclease activity was enhanced after irradiation at λ = 447 nm. The cell viability was significantly reduced only in the case of 5. The different behavior in the absence or presence of light makes complex 5 a potential prodrug of interest in PDT. Molecular docking studies followed by molecular dynamics simulations for 1 and the counterpart without the carboxyl group confirmed the experimental data that pointed to an intercalation mechanism. The cytotoxicity of 1 and the potential of 5 in PDT make them good candidates for subsequent conjugation, through the carboxyl group, to "selected peptides" which could facilitate the selective vectorization of the complex toward receptors that are overexpressed in neoplastic cell lines.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Carboxílicos/farmacología , Complejos de Coordinación/farmacología , Compuestos Organoplatinos/farmacología , Rutenio/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Apoptosis/efectos de los fármacos , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/efectos de la radiación , Línea Celular Tumoral , Cisplatino/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/efectos de la radiación , ADN/química , Daño del ADN , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/química , Sustancias Intercalantes/farmacología , Sustancias Intercalantes/efectos de la radiación , Luz , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Compuestos Organoplatinos/efectos de la radiación , Plásmidos
2.
J Inorg Biochem ; 117: 171-88, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23085598

RESUMEN

Aminophosphines 2-(diphenylphosphino)-1-methylimidazole (dpim) and diphenyl-2-pyridylphosphine (PPh(2)py) have been used to prepare two series of Ru(II) arene complexes of formulae [(η(6)-p-cymene)Ru(κ(2)-O,O'-X)(κ(1)-P-dpim)]Y (series a: 1a·Y-3a·Y) and [(η(6)-p-cymene)Ru(κ(2)-O,O'-X)(κ(1)-P-PPh(2)py)]Y (series b: 1b·Y-3b·Y) (where X=acac, acetylacetonate; bzac, benzoyl acetonate; dbzm, dibenzoyl methanoate; Y=BF(4), BPh(4)). The structures of 1a·BF(4), 1a·BPh(4), 3a·BF(4), 1b·BPh(4) and 3b·BPh(4) were determined by X-ray diffraction. The tetrafluoroborate derivatives are more soluble in organic solvents than their tetraphenylborate counterparts. Five BF(4)(-) derivatives (all except the unstable 1b·BF(4)) were selected to evaluate the cytotoxic behavior in vitro against the human cancer cell lines MCF-7 (breast cancer) and CAPAN-1 (pancreatic cancer). 2b·BF(4) and 3b·BF(4) exhibited IC(50) values similar to those of cisplatin. Electrophoresis and AFM studies showed good correspondence between the biological activity levels of 2b·BF(4) and 3b·BF(4) and their ability to modify the DNA structure. Hydrolytic studies indicate that aquation could be involved in the activation mechanism of these complexes and confirm that the hydrolysis rate of 3b·BF(4) is higher than that of 3a·BF(4). Thus, the cytotoxic activity trends are explained in terms of the higher reactivity of derivatives from series b, which in turn is rationalized as being the result of the electronic features of dpim and PPh(2)py established by cyclic voltammetry measurements.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Fosfinas/química , Rutenio/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Complejos de Coordinación/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Imidazoles/química , Difracción de Rayos X
3.
Chem Asian J ; 7(4): 788-801, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22308008

RESUMEN

The reactions of two diaminotriazine ligands 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine (2-pydaT) and 6-phenyl-2,4-diamino-1,3,5-triazine (PhdaT) with ruthenium-arene precursors led to a new family of ruthenium(II) compounds that were spectroscopically characterized. Four of the complexes were cationic, with the general formula [(η(6)-arene)Ru(κ(2)-N,N-2-pydaT)Cl]X (X=BF(4), TsO; arene=p-cymene: 1·BF(4), 1·TsO; arene=benzene: 2·BF(4), 2·TsO). The neutral cyclometalated complex [(η(6)-p-cymene)Ru(κ(2)-C,N-PhdaT*)Cl] (3) was also isolated. The structures of complexes 2·BF(4) and 3·H(2)O were determined by X-ray diffraction. Complex 1·BF(4) underwent a partial reversible-aquation process in water. UV/Vis and NMR spectroscopic measurements showed that the reaction was hindered by the addition of NaCl and was pH-controlled in acidic solution. At pH 7.0 (sodium cacodylate) Ru-Cl complex 1·BF(4) was the only species present in solution, even at low ionic strength. However, in alkaline medium (KOH), complex 1·BF(4) underwent basic hydrolysis to afford a Ru-OH complex (5). Fluorimetric studies revealed that the interaction of complex 1·BF(4) with DNA was not straightforward; instead, its main features were closely linked to ionic strength and to the [DNA]/complex ratio. The bifunctional complex 1·BF(4) was capable of interacting concurrently through both its p-cymene and 2-pydaT groups. Cytotoxicity and genotoxicity studies showed that, contrary to the expected behavior, the complex species was biologically inactive; the formation of a Ru-OH complex could be responsible for such behavior.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Rutenio/química , Triazinas/química , Animales , Células CHO , Complejos de Coordinación/toxicidad , Cricetinae , Cricetulus , Cristalografía por Rayos X , Cimenos , ADN/metabolismo , Conformación Molecular , Monoterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...