Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 14619, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32884112

RESUMEN

Topological surface states usually emerge at the boundary between a topological and a conventional insulator. Their precise physical character and spatial localization depend on the complex interplay between the chemical, structural and electronic properties of the two insulators in contact. Using a lattice-matched heterointerface of single and double bilayers of ß-antimonene and bismuth selenide, we perform a comprehensive experimental and theoretical study of the chiral surface states by means of microscopy and spectroscopic measurements complemented by first-principles calculations. We demonstrate that, although ß-antimonene is a trivial insulator in its free-standing form, it inherits the unique symmetry-protected spin texture from the substrate via a proximity effect that induces outward migration of the topological state. This "topologization" of ß-antimonene is found to be driven by the hybridization of the bands from either side of the interface.

2.
Sci Rep ; 10(1): 13226, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764583

RESUMEN

Modification of the gap at the Dirac point (DP) in axion antiferromagnetic topological insulator [Formula: see text] and its electronic and spin structure have been studied by angle- and spin-resolved photoemission spectroscopy (ARPES) under laser excitation at various temperatures (9-35 K), light polarizations and photon energies. We have distinguished both large (60-70 meV) and reduced ([Formula: see text]) gaps at the DP in the ARPES dispersions, which remain open above the Neél temperature ([Formula: see text]). We propose that the gap above [Formula: see text] remains open due to a short-range magnetic field generated by chiral spin fluctuations. Spin-resolved ARPES, XMCD and circular dichroism ARPES measurements show a surface ferromagnetic ordering for the "large gap" sample and apparently significantly reduced effective magnetic moment for the "reduced gap" sample. These observations can be explained by a shift of the Dirac cone (DC) state localization towards the second Mn layer due to structural disturbance and surface relaxation effects, where DC state is influenced by compensated opposite magnetic moments. As we have shown by means of ab-initio calculations surface structural modification can result in a significant modulation of the DP gap.

3.
Nature ; 576(7787): 416-422, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31853084

RESUMEN

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

4.
Nanotechnology ; 29(6): 065704, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29320369

RESUMEN

We report a study of the interface between antimony and the prototypical topological insulator Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of ß-antimonene.

5.
Phys Rev Lett ; 115(21): 216802, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26636863

RESUMEN

We have investigated plasmonic excitations at the surface of Bi_{2}Se_{3}(0001) via high-resolution electron energy loss spectroscopy. For low parallel momentum transfer q_{∥}, the loss spectrum shows a distinctive feature peaked at 104 meV. This mode varies weakly with q_{∥}. The behavior of its intensity as a function of primary energy and scattering angle indicates that it is a surface plasmon. At larger momenta (q_{∥}~0.04 Å^{-1}), an additional peak, attributed to the Dirac plasmon, becomes clearly defined in the loss spectrum. Momentum-resolved loss spectra provide evidence of the mutual interaction between the surface plasmon and the Dirac plasmon of Bi_{2}Se_{3}. The proposed theoretical model accounting for the coexistence of three-dimensional doping electrons and two-dimensional Dirac fermions accurately represents the experimental observations. The results reveal novel routes for engineering plasmonic devices based on topological insulators.

6.
Phys Rev Lett ; 113(11): 116802, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25259997

RESUMEN

Angular resolved photoemission spectroscopy in combination with ab initio calculations show that trace amounts of carbon doping of the Bi_{2}Se_{3} surface allows the controlled shift of the Dirac point within the bulk band gap. In contrast to expectation, no Rashba-split two-dimensional electron gas states appear. This unique electronic modification is related to surface structural modification characterized by an expansion of the top Se-Bi spacing of ≈11% as evidenced by surface x-ray diffraction. Our results provide new ways to tune the surface band structure of topological insulators.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...