Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 14(6)2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35737046

RESUMEN

Harmful algal blooms (HABs) are naturally occurring phenomena, and cyanobacteria are the most commonly occurring HABs in freshwater systems. Cyanobacteria HABs (cyanoHABs) negatively affect ecosystems and drinking water resources through the production of potent toxins. Furthermore, the frequency, duration, and distribution of cyanoHABs are increasing, and conditions that favor cyanobacteria growth are predicted to increase in the coming years. Current methods for mitigating cyanoHABs are generally short-lived and resource-intensive, and have negative impacts on non-target species. Cyanophages (viruses that specifically target cyanobacteria) have the potential to provide a highly specific control strategy with minimal impacts on non-target species and propagation in the environment. A detailed review (primarily up to 2020) of cyanophage lifecycle, diversity, and factors influencing infectivity is provided in this paper, along with a discussion of cyanophage and host cyanobacteria relationships for seven prominent cyanoHAB-forming genera in North America, including: Synechococcus, Microcystis, Dolichospermum, Aphanizomenon, Cylindrospermopsis, Planktothrix, and Lyngbya. Lastly, factors affecting the potential application of cyanophages as a cyanoHAB control strategy are discussed, including efficacy considerations, optimization, and scalability for large-scale applications.


Asunto(s)
Aphanizomenon , Bacteriófagos , Floraciones de Algas Nocivas , Microcystis , Synechococcus , Aphanizomenon/virología , Ecosistema , Interacciones Huésped-Patógeno , Microcystis/virología , Synechococcus/virología
2.
Water Res ; 188: 116523, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33125996

RESUMEN

Design and operation of drinking water treatment plants and associated distribution systems with long residence times are complicated by the formation of regulated disinfection byproducts (DBPs), comprised of total trihalomethanes (TTHM) and five haloacetic acids (HAA5). Treated water dissolved organic carbon (DOC) concentrations, the unit processes required to meet those DOC concentrations, and disinfection strategies (e.g., booster chlorination) are the primary design and operational considerations that can require extensive testing or modeling to determine. In this study, twelve different treated drinking waters were generated at the bench-scale using ferric chloride coagulation and granular activated carbon adsorption from four parent raw waters collected from the San Juan River representing spring runoff, monsoon, and low flow events. Treated drinking waters with DOC concentrations of 0.9, 1.4, and 1.9 mg/L were tested for regulated DBP formation under simulated distribution system (SDS) conditions over residence times as long as 56 days and compared to 7-day formation potential (FP) testing. SDS free chlorine concentrations were maintained between 0.2 and 1.0 mg/L as Cl2 through periodic booster chlorination. Maximum SDS TTHM and HAA5 concentrations were 0.208 and 0.074 mg/L, respectively, with formation consistently varying by approximately ±20% across the four different parent raw waters despite having been treated to the same three DOC concentrations. An average of four existing TTHM models consistently underpredicted TTHM formation by approximatively 20%. Long considered a conservative measure of DBP formation, FP testing also underpredicted SDS DBP formation at 56 days by approximately 40% on average. The DBP testing approach presented in this study allowed for the development of several significant linear relationships for predicting DBP concentrations based on treated water ultraviolet light absorbance at 254 nm, water temperature, and cumulative free chlorine demand.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Halogenación , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA