Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679452

RESUMEN

A self-decoupled technique is described that enables the radiating elements in the antenna array to be densely packed for multiple-input multiple-output (MIMO) wireless communications systems. High isolation between the adjacent antenna elements is obtained by fixing the radiating elements in an orthogonal configuration with respects to each other. Current from the adjacent ports cancels their impact which results in low mutual coupling. The additional benefit of this configuration is realizing a densely packed array. The ground plane of each radiating element on the array board itself are isolated to mitigate surface wave propagations to suppress mutual coupling between the antenna elements. The radiating elements are based on a modified edge-fed circular patch antenna that includes a curved slot line and open-circuited stub to widen the array's impedance bandwidth with no impact on the antenna's footprint size. The proposed technique was verified with the design of an antenna array of matrix size 4 × 4 centered at 3.5 GHz. The array had a measured impedance bandwidth of 4 GHz from 1.5 GHz to 5.5 GHz, which corresponds to a fractional bandwidth of 114%, peak gain of 3 dBi and radiation efficiency of 84%. Its average diversity gain and envelope correlation coefficient (ECC) over its operating band are 9.6 dB and <0.016, respectively. The minimum isolation achieved between the radiating elements is better than 15 dB. The dimensions of the array are 0.4 × 0.4 × 0.039λ_g^3. The proposed array has characteristics suitable for sub-6 GHz wireless communication systems


Asunto(s)
Vendajes , Reproducción , Impedancia Eléctrica , Comunicación
2.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298362

RESUMEN

A printed monopole antenna for millimeter-wave applications in the 5G frequency region is described in this research. As a result, the proposed antenna resonates in three frequency bands that are designated for 5G communication systems, including 28 GHz, 38 GHz, and 60 GHz (V band). For the sake of compactness, the coplanar waveguide (CPW) method is used. The overall size of the proposed tri-band antenna is 4 mm × 3 mm × 0.25 mm. Using a watch strap and human tissue, such as skin, the proposed antenna gives steady results. At 28 GHz, 38 GHz, and 60 GHz, the antenna's gain is found to be 5.29 dB, 7.47 dB, and 9 dB, respectively. The overall simulated radiation efficiency is found to be 85% over the watch strap. Wearable devices are a great fit for the proposed tri-band antenna. The antenna prototype was built and tested in order to verify its performance. It can be observed that the simulated and measured results are in close contact. According to our comparative research, the proposed antenna is a good choice for smart 5G devices because of its small size and simple structure, as well as its high gain and radiation efficiency.


Asunto(s)
Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Diseño de Equipo , Registros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...