Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 111(19): 3084-3101.e5, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37797581

RESUMEN

Heterozygous mutations in the dual-specificity tyrosine phosphorylation-regulated kinase 1a (Dyrk1a) gene define a syndromic form of autism spectrum disorder. The synaptic and circuit mechanisms mediating DYRK1A functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which DYRK1A recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, ABLIM3, as a synaptic substrate of DYRK1A. We demonstrate that Ablim3 downregulation in dentate granule cells of adult heterozygous Dyrk1a mice is sufficient to restore PV IN-mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult heterozygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting DYRK1A synaptic and circuit substrates as "enhancers of DYRK1A function" harbors the potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Encéfalo , Fibras Musgosas del Hipocampo/fisiología , Parvalbúminas , Reconocimiento en Psicología , Sinapsis/fisiología , Quinasas DyrK
2.
Neuropsychopharmacology ; 48(12): 1724-1734, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37400565

RESUMEN

Use of the synthetic opioid fentanyl increased ~300% in the last decade, including among women of reproductive ages. Adverse neonatal outcomes and long-term behavioral disruptions are associated with perinatal opioid exposure. Our previous work demonstrated that perinatal fentanyl exposed mice displayed enhanced negative affect and somatosensory circuit and behavioral disruptions during adolescence. However, little is known about molecular adaptations across brain regions that underlie these outcomes. We performed RNA sequencing across three reward and two sensory brain areas to study transcriptional programs in perinatal fentanyl exposed juvenile mice. Pregnant dams received 10 µg/ml fentanyl in the drinking water from embryonic day 0 (E0) through gestational periods until weaning at postnatal day 21 (P21). RNA was extracted from nucleus accumbens (NAc), prelimbic cortex (PrL), ventral tegmental area (VTA), somatosensory cortex (S1) and ventrobasal thalamus (VBT) from perinatal fentanyl exposed mice of both sexes at P35. RNA sequencing was performed, followed by analysis of differentially expressed genes (DEGs) and gene co-expression networks. Transcriptome analysis revealed DEGs and gene modules significantly associated with exposure to perinatal fentanyl in a sex-wise manner. The VTA had the most DEGs, while robust gene enrichment occurred in NAc. Genes enriched in mitochondrial respiration were pronounced in NAc and VTA of perinatal fentanyl exposed males, extracellular matrix (ECM) and neuronal migration enrichment were pronounced in NAc and VTA of perinatal fentanyl exposed males, while genes associated with vesicular cycling and synaptic signaling were markedly altered in NAc of perinatal fentanyl exposed female mice. In sensory areas from perinatal fentanyl exposed females, we found alterations in mitochondrial respiration, synaptic and ciliary organization processes. Our findings demonstrate distinct transcriptomes across reward and sensory brain regions, with some showing discordance between sexes. These transcriptome adaptations may underlie structural, functional, and behavioral changes observed in perinatal fentanyl exposed mice.


Asunto(s)
Fentanilo , Transcriptoma , Masculino , Embarazo , Ratones , Femenino , Humanos , Animales , Fentanilo/farmacología , Analgésicos Opioides/farmacología , Encéfalo , Núcleo Accumbens/fisiología , Área Tegmental Ventral/fisiología , Recompensa , Perfilación de la Expresión Génica
3.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778241

RESUMEN

Heterozygous mutations in the Dual specificity tyrosine-phosphorylation-regulated kinase 1a Dyrk1a gene define a syndromic form of Autism Spectrum Disorder. The synaptic and circuit mechanisms mediating Dyrk1a functions in social cognition are unclear. Here, we identify a social experience-sensitive mechanism in hippocampal mossy fiber-parvalbumin interneuron (PV IN) synapses by which Dyrk1a recruits feedforward inhibition of CA3 and CA2 to promote social recognition. We employ genetic epistasis logic to identify a cytoskeletal protein, Ablim3, as a synaptic substrate of Dyrk1a. We demonstrate that Ablim3 downregulation in dentate granule cells of adult hemizygous Dyrk1a mice is sufficient to restore PV IN mediated inhibition of CA3 and CA2 and social recognition. Acute chemogenetic activation of PV INs in CA3/CA2 of adult hemizygous Dyrk1a mice also rescued social recognition. Together, these findings illustrate how targeting Dyrk1a synaptic and circuit substrates as "enhancers of Dyrk1a function" harbors potential to reverse Dyrk1a haploinsufficiency-associated circuit and cognition impairments. Highlights: Dyrk1a in mossy fibers recruits PV IN mediated feed-forward inhibition of CA3 and CA2Dyrk1a-Ablim3 signaling in mossy fiber-PV IN synapses promotes inhibition of CA3 and CA2 Downregulating Ablim3 restores PV IN excitability, CA3/CA2 inhibition and social recognition in Dyrk1a+/- mice Chemogenetic activation of PV INs in CA3/CA2 rescues social recognition in Dyrk1a+/- mice.

4.
J Neurosci ; 42(17): 3557-3569, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35332082

RESUMEN

The opioid epidemic is a rapidly evolving societal issue driven, in part, by a surge in synthetic opioid use. A rise in fentanyl use among pregnant women has led to a 40-fold increase in the number of perinatally-exposed infants in the past decade. These children are more likely to develop mood-related and somatosensory-related conditions later in life, suggesting that fentanyl may permanently alter neural development. Here, we examined the behavioral and synaptic consequences of perinatal fentanyl exposure in adolescent male and female C57BL/6J mice and assessed the therapeutic potential of environmental enrichment to mitigate these effects. Dams were given ad libitum access to fentanyl (10 µg/ml, per os) across pregnancy and until weaning [postnatal day (PD)21]. Perinatally-exposed adolescent mice displayed hyperactivity (PD45), enhanced sensitivity to anxiogenic environments (PD46), and sensory maladaptation (PD47), sustained behavioral effects that were completely normalized by environmental enrichment (PD21-PD45). Additionally, environmental enrichment normalized the fentanyl-induced changes in the frequency of miniature EPSCs (mEPSCs) of layer 2/3 neurons in the primary somatosensory cortex (S1). We also demonstrate that fentanyl impairs short-term potentiation (STP) and long-term potentiation (LTP) in S1 layer 2/3 neurons, which, instead, exhibit a sustained depression of synaptic transmission that is restored by environmental enrichment. On its own, environmental enrichment suppressed long-term depression (LTD) of control S1 neurons from vehicle-treated mice subjected to standard housing conditions. These results demonstrate that the lasting effects of fentanyl can be ameliorated with a noninvasive intervention introduced during early development.SIGNIFICANCE STATEMENT Illicit use of fentanyl accounts for a large proportion of opioid-related overdose deaths. Children exposed to opioids during development have a higher risk of developing neuropsychiatric disorders later in life. Here, we employ a preclinical model of perinatal fentanyl exposure that recapitulates these long-term impairments and show, for the first time, that environmental enrichment can reverse deficits in somatosensory circuit function and behavior. These findings have the potential to directly inform and guide ongoing efforts to mitigate the consequences of perinatal opioid exposure.


Asunto(s)
Fentanilo , Trastornos Relacionados con Opioides , Analgésicos Opioides/uso terapéutico , Animales , Femenino , Fentanilo/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Embarazo
5.
J Neurosci ; 42(17): 3676-3687, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35332087

RESUMEN

Opioid use by pregnant women results in neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits including language impairments. Animal models of NOWS show impaired performance in a two-tone auditory discrimination task, suggesting abnormalities in sensory processing in the auditory cortex. To investigate the consequences of perinatal opioid exposure on auditory cortex circuits, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (P)21. We then used in vivo two-photon Ca2+ imaging in adult animals of both sexes to investigate how primary auditory cortex (A1) function was altered. Perinatally exposed animals showed fewer sound-responsive neurons in A1, and the remaining sound-responsive cells exhibited lower response amplitudes but normal frequency selectivity and stimulus-specific adaptation (SSA). Populations of nearby layer 2/3 (L2/3) cells in exposed animals showed reduced correlated activity, suggesting a reduction of shared inputs. We then investigated A1 microcircuits to L2/3 cells by performing laser-scanning photostimulation (LSPS) combined with whole-cell patch-clamp recordings from A1 L2/3 cells. L2/3 cells in exposed animals showed functional hypoconnectivity of excitatory circuits of ascending inputs from L4 and L5/6 to L2/3, while inhibitory connections were unchanged, leading to an altered excitatory/inhibitory balance. These results suggest a specific reduction in excitatory ascending interlaminar cortical circuits resulting in decreased activity correlations after fentanyl exposure. We speculate that these changes in cortical circuits contribute to the impaired auditory discrimination ability after perinatal opioid exposure.SIGNIFICANCE STATEMENT This is the first study to investigate the functional effects of perinatal fentanyl exposure on the auditory cortex. Experiments show that perinatal fentanyl exposure results in decreased excitatory functional circuits and altered population activity in primary sensory areas in adult mice. These circuit changes might underlie the observed language and cognitive deficits in infants exposed to opioids.


Asunto(s)
Corteza Auditiva , Analgésicos Opioides/farmacología , Animales , Corteza Auditiva/fisiología , Femenino , Fentanilo/farmacología , Humanos , Masculino , Ratones , Neuronas/fisiología , Técnicas de Placa-Clamp , Embarazo
6.
Front Psychiatry ; 12: 737389, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867530

RESUMEN

The potency of the synthetic opioid fentanyl and its increased clinical availability has led to the rapid escalation of use in the general population, increased recreational exposure, and subsequently opioid-related overdoses. The wide-spread use of fentanyl has, consequently, increased the incidence of in utero exposure to the drug, but the long-term effects of this type of developmental exposure are not yet understood. Opioid use has also been linked to reduced mitochondrial copy number in blood in clinical populations, but the link between this peripheral biomarker and genetic or functional changes in reward-related brain circuitry is still unclear. Additionally, mitochondrial-related gene expression in reward-related brain regions has not been examined in the context of fentanyl exposure, despite the growing literature demonstrating drugs of abuse impact mitochondrial function, which subsequently impacts neuronal signaling. The current study uses exposure to fentanyl via dam access to fentanyl drinking water during gestation and lactation as a model for developmental drug exposure. This perinatal drug-exposure is sufficient to impact mitochondrial copy number in circulating blood leukocytes, as well as mitochondrial-related gene expression in the nucleus accumbens (NAc), a reward-related brain structure, in a sex-dependent manner in adolescent offspring. Specific NAc gene expression is correlated with both blood mitochondrial copy number and with anxiety related behaviors dependent on developmental exposure to fentanyl and sex. These data indicate that developmental fentanyl exposure impacts mitochondrial function in both the brain and body in ways that can impact neuronal signaling and may prime the brain for altered reward-related behavior in adolescence and later into adulthood.

7.
J Neurosci ; 41(15): 3400-3417, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853934

RESUMEN

One consequence of the opioid epidemic are lasting neurodevelopmental sequelae afflicting adolescents exposed to opioids in the womb. A translationally relevant and developmentally accurate preclinical model is needed to understand the behavioral, circuit, network, and molecular abnormalities resulting from this exposure. By employing a novel preclinical model of perinatal fentanyl exposure, our data reveal that fentanyl has several dose-dependent, developmental consequences to somatosensory function and behavior. Newborn male and female mice exhibit signs of withdrawal and sensory-related deficits that extend at least to adolescence. As fentanyl exposure does not affect dams' health or maternal behavior, these effects result from the direct actions of perinatal fentanyl on the pups' developing brain. At adolescence, exposed mice exhibit reduced adaptation to sensory stimuli, and a corresponding impairment in primary somatosensory (S1) function. In vitro electrophysiology demonstrates a long-lasting reduction in S1 synaptic excitation, evidenced by decreases in release probability, NMDA receptor-mediated postsynaptic currents, and frequency of miniature excitatory postsynaptic currents (mEPSCs), as well as increased frequency of miniature inhibitory postsynaptic currents (mIPSCs). In contrast, anterior cingulate cortical neurons exhibit an opposite phenotype, with increased synaptic excitation. Consistent with these changes, electrocorticograms (ECoGs) reveal suppressed ketamine-evoked γ oscillations. Morphologic analysis of S1 pyramidal neurons indicate reduced dendritic complexity, dendritic length, and soma size. Further, exposed mice exhibited abnormal cortical mRNA expression of key receptors involved in synaptic transmission and neuronal growth and development, changes that were consistent with the electrophysiological and morphologic changes. These findings demonstrate the lasting sequelae of perinatal fentanyl exposure on sensory processing and function.SIGNIFICANCE STATEMENT This is the first study to show that exposure to fentanyl in the womb results in behavioral, circuitry, and synaptic effects that last at least to adolescence. We also show, for the first time, that this exposure has different, lasting effects on synapses in different cortical areas.


Asunto(s)
Analgésicos Opioides/toxicidad , Potenciales Evocados Somatosensoriales , Fentanilo/toxicidad , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Potenciales Sinápticos , Adaptación Fisiológica , Animales , Conducta Animal , Femenino , Ritmo Gamma , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Percepción , Embarazo , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Células Piramidales/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/crecimiento & desarrollo
8.
Addict Biol ; 26(2): e12895, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32187805

RESUMEN

Opioid use by pregnant women is an understudied consequence associated with the opioid epidemic, resulting in a rise in the incidence of neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits that result from perinatal opioid exposure. There are few preclinical models that accurately recapitulate human perinatal drug exposure and few focus on fentanyl, a potent synthetic opioid that is a leading driver of the opioid epidemic. To investigate the consequences of perinatal opioid exposure, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (PD) 21. Fentanyl-exposed dams delivered smaller litters and had higher litter mortality rates compared with controls. Metrics of maternal care behavior were not affected by the treatment, nor were there differences in dams' weight or liquid consumption throughout gestation and 21 days postpartum. Twenty-four hours after weaning and drug cessation, perinatal fentanyl-exposed mice exhibited signs of spontaneous somatic withdrawal behavior and sex-specific weight fluctuations that normalized in adulthood. At adolescence (PD 35), they displayed elevated anxiety-like behaviors and decreased grooming, assayed in the elevated plus maze and sucrose splash tests. Finally, by adulthood (PD 55), they displayed impaired performance in a two-tone auditory discrimination task. Collectively, our findings suggest that perinatal fentanyl-exposed mice exhibit somatic withdrawal behavior and change into early adulthood reminiscent of humans born with NOWS.


Asunto(s)
Conducta Animal/efectos de los fármacos , Fentanilo/farmacología , Narcóticos/farmacología , Síndrome de Abstinencia Neonatal/patología , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Ansiedad/patología , Femenino , Tamaño de la Camada , Conducta Materna/efectos de los fármacos , Ratones , Embarazo
9.
eNeuro ; 7(6)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33004417

RESUMEN

Larval zebrafish possess a number of molecular and genetic advantages for rigorous biological analyses of learning and memory. These advantages have motivated the search for novel forms of memory in these animals that can be exploited for understanding the cellular and molecular bases of vertebrate memory formation and consolidation. Here, we report a new form of behavioral sensitization in zebrafish larvae that is elicited by an aversive chemical stimulus [allyl isothiocyanate (AITC)] and that persists for ≥30 min. This form of sensitization is expressed as enhanced locomotion and thigmotaxis, as well as elevated heart rate. To characterize the neural basis of this nonassociative memory, we used transgenic zebrafish expressing the fluorescent calcium indicator GCaMP6 (Chen et al., 2013); because of the transparency of larval zebrafish, we could optically monitor neural activity in the brain of intact transgenic zebrafish before and after the induction of sensitization. We found a distinct brain area, previously linked to locomotion, that exhibited persistently enhanced neural activity following washout of AITC; this enhanced neural activity correlated with the behavioral sensitization. These results establish a novel form of memory in larval zebrafish and begin to unravel the neural basis of this memory.


Asunto(s)
Memoria , Pez Cebra , Animales , Animales Modificados Genéticamente , Larva , Locomoción
10.
J Affect Disord ; 249: 347-356, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30807936

RESUMEN

BACKGROUND: Epidemiological reports indicate that mood-related disorders are common in the adolescent population. The prevalence of juvenile major depressive disorder has resulted in a parallel increase in the prescription rates of fluoxetine (FLX) within this age group. Although such treatment can last for years, little is known about the enduring consequences of adolescent antidepressant exposure on memory-related performance. METHODS: We exposed separate groups of adolescent (postnatal day [PD] 35) male and female C57BL/6 mice to FLX (20 mg/kg) for 15 consecutive days (PD35-49). Three weeks after FLX exposure (PD70), we assessed learning and memory performance on a single-day training object novelty recognition test, or a spatial memory task on the Morris water maze (MWM). RESULTS: We found that FLX pretreatment did not influence performance on either the object novelty recognition task or the MWM, 24 h after training. Conversely, 48 h post spatial-training on the MWM, FLX pretreated male mice spent significantly less time on the quadrant of the missing platform during a standard probe trial. No differences in MWM performance were observed in the adult female mice pretreated with FLX. LIMITATIONS: A limitation of this study is that normal adolescent mice (i.e., non-stressed) were evaluated for memory-related behavior three weeks after antidepressant exposure. Thus, it is possible that FLX pre-exposure in combination with animal models for the study of depression may yield different results. CONCLUSION: Together, these results demonstrate enduring spatial memory-related deficiencies after pre-exposure to FLX during adolescence in male, but not female, C57BL/6 mice.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Conducta Animal/efectos de los fármacos , Trastorno Depresivo Mayor/tratamiento farmacológico , Fluoxetina/farmacología , Memoria Espacial/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Conducta Alimentaria/efectos de los fármacos , Femenino , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL
11.
Biol Psychiatry ; 83(12): 1012-1023, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452828

RESUMEN

BACKGROUND: The ability to appropriately integrate and respond to rewarding and aversive stimuli is essential for survival. The ventral pallidum (VP) plays a critical role in processing both rewarding and aversive stimuli. However, the VP is a heterogeneous structure, and how VP subpopulations integrate into larger reward networks to ultimately modulate these behaviors is not known. We identify a noncanonical population of glutamatergic VP neurons that play a unique role in responding to aversive stimuli and constraining inappropriate reward seeking. METHODS: Using neurochemical, genetic, and electrophysiological approaches, we characterized glutamatergic VP neurons (n = 4-8 mice/group). We performed patch clamp and in vivo electrophysiology recordings in the lateral habenula, rostromedial tegmental nucleus, and ventral tegmental area to determine the effect of glutamatergic VP neuron activation in these target regions (n = 6-10 mice/group). Finally, we selectively optogenetically stimulated glutamatergic VP neurons in a real-time place preference task and ablated these neurons using a virally expressed caspase to determine their necessity for reward seeking. RESULTS: Glutamatergic VP neurons exhibit little overlap with cholinergic or gamma-aminobutyric acidergic markers, the canonical VP subtypes, and exhibit distinct membrane properties. Glutamatergic VP neurons innervate and increase firing activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons. While nonselective optogenetic stimulation of the VP induced a robust place preference, selective activation of glutamatergic VP neurons induced a place avoidance. Viral ablation of glutamatergic VP neurons increased reward responding and abolished taste aversion to sucrose. CONCLUSIONS: Glutamatergic VP neurons constitute a noncanonical subpopulation of VP neurons. These glutamatergic VP neurons increase activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons and adaptively constrain reward seeking.


Asunto(s)
Prosencéfalo Basal/citología , Ácido Glutámico/metabolismo , Habénula/fisiología , Neuronas/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Reacción de Prevención/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Condicionamiento Operante/fisiología , Dopamina/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Ácido Glutámico/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Gusto , Transducción Genética , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteína Fluorescente Roja
12.
Biol Psychiatry ; 83(1): 9-17, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28888327

RESUMEN

BACKGROUND: Stress is a prevailing risk factor for mood-related illnesses, wherein women represent the majority of those affected by major depression. Despite the growing literature suggesting that affective disorders can arise after a traumatic event is vicariously experienced, this relationship remains understudied in female subjects at the preclinical level. Thus, the objective of the current investigation was to examine whether exposure to emotional and/or psychological stress (ES) mediates depression-related outcomes in female mice. METHODS: Female C57BL/6 mice (8 weeks old, null parity) vicariously experienced the defeat bout of a male conspecific, by a male CD1 aggressor, for 10 consecutive days. Twenty-four hours after the last stress exposure, female mice were tested in the social interaction, sucrose preference, tail suspension, or elevated plus maze tests. Furthermore, we examined whether ketamine and chlordiazepoxide, pharmacological agents used to treat mood-related disorders in the clinical population, would reverse the ES-induced social dysfunction. RESULTS: When compared with control mice, female mice exposed to ES displayed decreased social behavior and preference for sucrose, along with increased immobility in the tail suspension test. Also, they displayed higher levels of blood serum corticosterone, as well as decreased body weight. Lastly, the ES-induced avoidance-like phenotype was ameliorated by both ketamine and chlordiazepoxide. CONCLUSIONS: Our data indicate that female mice exposed to ES display a behavioral and physiologic profile that mimics symptoms of depression in the clinical population. As such, this experimental model may be adopted to examine vicarious stress-induced mood-related disorders, as well as pharmacological antidepressant response, in a sex-specific manner.


Asunto(s)
Trastorno Depresivo/etiología , Dominación-Subordinación , Estrés Psicológico/etiología , Animales , Antidepresivos/farmacología , Reacción de Prevención/efectos de los fármacos , Peso Corporal , Clordiazepóxido/farmacología , Corticosterona/sangre , Trastorno Depresivo/sangre , Trastorno Depresivo/tratamiento farmacológico , Sacarosa en la Dieta , Modelos Animales de Enfermedad , Exposición a la Violencia , Femenino , Ketamina/farmacología , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Pruebas Psicológicas , Estrés Psicológico/sangre , Estrés Psicológico/tratamiento farmacológico , Percepción del Gusto/efectos de los fármacos , Percepción Visual
13.
Neurobiol Stress ; 5: 54-64, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27981196

RESUMEN

Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes for 10 consecutive days. Twenty-four h later, separate groups of mice were tested on the social interaction and tail suspension tests. Hippocampi were then dissected and Western blots were conducted to quantify protein levels for various markers important for synaptic plasticity including protein kinase M zeta (PKMζ), protein kinase C zeta (PKCζ), the dopamine-1 (D1) receptor, tyrosine hydroxylase (TH), and the dopamine transporter (DAT). Furthermore, we examined the presence of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor subunit GluA2 as well as colocalization with the post-synaptic density 95 (PSD95) protein, within different spine subtypes (filopodia, stubby, long-thin, mushroom) using an immunohistochemistry and Golgi-Cox staining technique. The results revealed that social defeat induced a depression-like behavioral profile, as inferred from decreased social interaction levels, increased immobility on the tail suspension test, and decreases in body weight. Whole hippocampal immunoblots revealed decreases in GluA2, with a concomitant increase in DAT and TH levels in the stressed group. Spine morphology analyses further showed that defeated mice displayed a significant decrease in stubby spines, and an increase in long-thin spines within the CA1 stratum radiatum. Further evaluation of GluA2/PSD95 containing-spines demonstrated a decrease of these markers within long-thin and mushroom spine types. Together, these results indicate that juvenile social stress induces GluA2- and dopamine-associated dysregulation in the hippocampus - a neurobiological mechanism potentially underlying the development of mood-related syndromes as a consequence of adolescent bullying.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA