Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(4): e2300396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086006

RESUMEN

Many viruses exploit the human C-type lectin receptor dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) for cell entry and virus dissemination. An inhibition of DC-SIGN-mediated virus attachment by glycan-derived ligands has, thus, emerged as a promising strategy toward broad-spectrum antiviral therapeutics. In this contribution, several cognate fragments of oligomannose- and complex-type glycans grafted onto a poly-l-lysine scaffold are evaluated as polyvalent DC-SIGN ligands. The range of selected carbohydrate epitopes encompasses linear (α- d-Man-(1→2)-α- d-Man, α- d-Man-(1→2)-α- d-Man-(1→2)-α- d-Man-(1→3)-α- d-Man) and branched (α- d-Man-(1→6)-[α- d-Man-(1→3)]-α- d-Man) oligomannosides, as well as α- l-Fuc. The thermodynamics of binding are investigated on a mono- and multivalent level to shed light on the molecular details of the interactions with the tetravalent receptor. Cellular models of virus attachment and DC-SIGN-mediated virus dissemination reveal a high potency of the presented glycopolymers in the low pico- and nanomolar ranges, respectively. The high activity of oligomannose epitopes in combination with the biocompatible properties of the poly- l-lysine scaffold highlights the potential for further preclinical development of polyvalent DC-SIGN ligands.


Asunto(s)
COVID-19 , Moléculas de Adhesión Celular , Receptores de Superficie Celular , SARS-CoV-2 , Humanos , Molécula 3 de Adhesión Intercelular , Polímeros , Relación Estructura-Actividad , Lectinas Tipo C/metabolismo , Ligandos , Polisacáridos/farmacología , Epítopos
2.
Artículo en Inglés | MEDLINE | ID: mdl-34759022

RESUMEN

BACKGROUND AND OBJECTIVES: The objective of the retrospective analysis was to test the hypothesis that changes in serum anti-myelin-associated glycoprotein (MAG) autoantibodies are associated with clinical response to immunotherapy in patients with anti-MAG neuropathy. METHODS: As of January 29, 2020, we used anti-myelin-associated glycoprotein-related search strings in the Medline database to identify studies that provided information on anti-MAG immunoglobulin M (IgM) autoantibodies and clinical outcomes during immunotherapies. The relative change in anti-MAG IgM titers, paraprotein levels, or total IgM was determined before, during, or posttreatment, and the patients were assigned to "responder," "nonresponder,"' or "acute deteriorating" category depending on their clinical response to treatment. The studies were qualified as "supportive" or "not supportive" depending on the percentage of patients exhibiting an association between relative change of anti-MAG antibody titers or levels and change in clinical outcomes. RESULTS: Fifty studies with 410 patients with anti-MAG neuropathy were included in the analysis. Forty studies with 303 patients supported the hypothesis that a "responder" patient had a relative reduction of anti-MAG antibody titers or levels that is associated with clinical improvements and "nonresponder" patients exhibited no significant change in anti-MAG IgM antibodies. Six studies with 93 patients partly supported, and 4 studies with 26 patients did not support the hypothesis. DISCUSSION: The retrospective analysis confirmed the hypothesis that a relative reduction in serum anti-MAG IgM antibodies is associated with a clinical response to immunotherapies; a sustained reduction of at least 50% compared with pretreatment titers or levels could be a valuable indicator for therapeutic response.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Autoinmunes del Sistema Nervioso/sangre , Enfermedades Autoinmunes del Sistema Nervioso/tratamiento farmacológico , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Factores Inmunológicos/farmacología , Glicoproteína Asociada a Mielina/inmunología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
3.
J Am Chem Soc ; 143(42): 17465-17478, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34652144

RESUMEN

The C-type lectin receptor DC-SIGN is a pattern recognition receptor expressed on macrophages and dendritic cells. It has been identified as a promiscuous entry receptor for many pathogens, including epidemic and pandemic viruses such as SARS-CoV-2, Ebola virus, and HIV-1. In the context of the recent SARS-CoV-2 pandemic, DC-SIGN-mediated virus dissemination and stimulation of innate immune responses has been implicated as a potential factor in the development of severe COVID-19. Inhibition of virus binding to DC-SIGN, thus, represents an attractive host-directed strategy to attenuate overshooting innate immune responses and prevent the progression of the disease. In this study, we report on the discovery of a new class of potent glycomimetic DC-SIGN antagonists from a focused library of triazole-based mannose analogues. Structure-based optimization of an initial screening hit yielded a glycomimetic ligand with a more than 100-fold improved binding affinity compared to methyl α-d-mannopyranoside. Analysis of binding thermodynamics revealed an enthalpy-driven improvement of binding affinity that was enabled by hydrophobic interactions with a loop region adjacent to the binding site and displacement of a conserved water molecule. The identified ligand was employed for the synthesis of multivalent glycopolymers that were able to inhibit SARS-CoV-2 spike glycoprotein binding to DC-SIGN-expressing cells, as well as DC-SIGN-mediated trans-infection of ACE2+ cells by SARS-CoV-2 spike protein-expressing viruses, in nanomolar concentrations. The identified glycomimetic ligands reported here open promising perspectives for the development of highly potent and fully selective DC-SIGN-targeted therapeutics for a broad spectrum of viral infections.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Moléculas de Adhesión Celular/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , COVID-19/metabolismo , COVID-19/virología , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo
4.
ChemMedChem ; 16(15): 2345-2353, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34061468

RESUMEN

The C-type lectin receptor DC-SIGN mediates interactions with envelope glycoproteins of many viruses such as SARS-CoV-2, ebola, and HIV and contributes to virus internalization and dissemination. In the context of the recent SARS-CoV-2 pandemic, involvement of DC-SIGN has been linked to severe cases of COVID-19. Inhibition of the interaction between DC-SIGN and viral glycoproteins has the potential to generate broad spectrum antiviral agents. Here, we demonstrate that mannose-functionalized poly-l-lysine glycoconjugates efficiently inhibit the attachment of viral glycoproteins to DC-SIGN-presenting cells with picomolar affinity. Treatment of these cells leads to prolonged receptor internalization and inhibition of virus binding for up to 6 h. Furthermore, the polymers are fully bio-compatible and readily cleared by target cells. The thermodynamic analysis of the multivalent interactions reveals enhanced enthalpy-driven affinities and promising perspectives for the future development of multivalent therapeutics.


Asunto(s)
Antivirales/farmacología , Moléculas de Adhesión Celular/antagonistas & inhibidores , Glicoconjugados/farmacología , Lectinas Tipo C/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores , Acoplamiento Viral/efectos de los fármacos , Antivirales/síntesis química , Antivirales/metabolismo , Moléculas de Adhesión Celular/metabolismo , Glicoconjugados/síntesis química , Glicoconjugados/metabolismo , Humanos , Lectinas Tipo C/metabolismo , Manosa/análogos & derivados , Manosa/metabolismo , Manosa/farmacología , Pruebas de Sensibilidad Microbiana , Polilisina/análogos & derivados , Polilisina/metabolismo , Polilisina/farmacología , Unión Proteica/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , SARS-CoV-2/efectos de los fármacos , Células THP-1 , Termodinámica , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/metabolismo
5.
J Neurochem ; 154(5): 486-501, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32270492

RESUMEN

Anti-myelin-associated glycoprotein (MAG) neuropathy is a disabling autoimmune peripheral neuropathy that is caused by circulating monoclonal IgM autoantibodies directed against the human natural killer-1 (HNK-1) epitope. This carbohydrate epitope is highly expressed on adhesion molecules such as MAG, a glycoprotein present in myelinated nerves. We previously showed the therapeutic potential of the glycopolymer poly(phenyl disodium 3-O-sulfo-ß-d-glucopyranuronate)-(1→3)-ß-d-galactopyranoside (PPSGG) in selectively neutralizing anti-MAG IgM antibodies in an immunological mouse model and ex vivo with sera from anti-MAG neuropathy patients. PPSGG is composed of a biodegradable backbone that multivalently presents a mimetic of the HNK-1 epitope. In this study, we further explored the pharmacodynamic properties of the glycopolymer and its ability to inhibit the binding of anti-MAG IgM to peripheral nerves. The polymer selectively bound anti-MAG IgM autoantibodies and prevented the binding of patients' anti-MAG IgM antibodies to myelin of non-human primate sciatic nerves. Upon PPSGG treatment, neither activation nor inhibition of human and murine peripheral blood mononuclear cells nor alteration of systemic inflammatory markers was observed in mice or ex vivo in human peripheral blood mononuclear cells. Intravenous injections of PPSGG to mice immunized against the HNK-1 epitope removed anti-MAG IgM antibodies within less than 1 hr, indicating a fast and efficient mechanism of action as compared to a B-cell depletion with anti-CD20. In conclusion, these observations corroborate the therapeutic potential of PPSGG for an antigen-specific treatment of anti-MAG neuropathy. Read the Editorial Highlight for this article on page 465.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Leucocitos Mononucleares/metabolismo , Vaina de Mielina/metabolismo , Enfermedades del Sistema Nervioso Periférico/inmunología , Autoanticuerpos/inmunología , Glicoproteínas/metabolismo , Humanos , Inmunoglobulina M/inmunología , Leucocitos Mononucleares/inmunología , Nervios Periféricos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...