Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(4): 1909-1918, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38215459

RESUMEN

Unprecedented iron-based silsesquioxane/acetylacetonate complexes were synthesized. The intriguing cage-like structure of compounds is alkaline metal-dependent: the Fe2Li2 complex includes condensed Si6-silsesquioxane and four acetylacetonate ligands; the Fe4Na4 complex exhibits two cyclic Si4-silsesquioxane and eight acetylacetonate ligands, while the Fe3K3 complex features two cyclic Si3-silsesquioxane and six acetylacetonate ligands. The latter case is the very first observation of small trimeric silsesquioxane ligands in the composition of cage-like metallasilsesquioxanes. The Fe4Na4-based complex exhibits a record high activity in the oxidation of inert alkanes with peroxides (55% yield of oxygenates in cyclohexane oxidation). It also acts as a catalyst in the cycloaddition of CO2 with epoxides, leading to cyclic carbonates in good yields (58-96%).

2.
ACS Omega ; 8(45): 42290-42300, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024759

RESUMEN

Three new zinc(II) complexes [Zn(H2L3)2(H2O)3] (Zn2), [Zn(H3L2a)(H2O)3]n (Zn3) (H3L2a = 2,4-diiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)isophthalate) and [Zn(HL4)(DMF)(H2O)]n (Zn4) were synthesized by the reaction of Zn(II) salts with 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl) isophthalic acid (H3L3), 2,4,6-triiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl) isophthalic acid (H5L2) (in the presence of NH2OH·HCl) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)-2,4,6-triiodoisophthalic acid (H3L4), respectively. According to the X-ray structural analysis, the intramolecular resonance-assisted hydrogen bond ring remains intact, with N···O distances of 2.562(5) and 2.573(5) Å in Zn2, 2.603(6) Å in Zn3, and 2.563(8) Å in Zn4. In the crystal packing of Zn3, the cooperation of I···O and I···I types of halogen bonds between tectons leads to a one-dimensional supramolecular polymer, while I···O interactions aggregate 1D chains of coordination polymer Zn4. These new complexes (Zn2, Zn3, and Zn4) and known [Zn(H3L1)(H2O)2]n (Zn1) (H3L1 = 5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene) hydrazineyl)isophthalate), {[Zn(H3L1)(H2O)3]·3H2O}n (Zn5), [Cd(H3L1)(H2O)2]n (Cd1), {[Cd(HL3)(H2O)2(DMF)]·H2O}n (Cd2), [Cd(H3L3)]n (Cd-3), {[Cd2(µ-H2O)2(µ-H2L4)2(H2L4)2]·2H2O}n (Cd4), and {[Cd(H3L1)(H2O)3]·4H2O}n (Cd5) were tested as catalysts in the cycloaddition reaction of CO2 with epoxides in the presence of tetrabutylammonium halides as the cocatalyst. The halogen-bonded catalyst Zn4 is the most efficient one in the presence of tetrabutylammonium bromide by affording a high yield (85-99%) of cyclic carbonates under solvent-free conditions after 48 h at 40 bar and 80 °C.

3.
Inorg Chem ; 62(38): 15537-15549, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37698451

RESUMEN

This study reports a novel family of cage manganesesilsesquioxanes prepared via complexation with bathophenanthroline (4,7-diphenyl-1,10-phenanthroline). The resulting Mn4-, Mn6Li2-, and Mn4Na-compounds exhibit several unprecedented cage metallasilsesquioxane structural features, including intriguing self-assembly of silsesquioxane ligands. Complexes were tested in vitro for fungicidal activity against seven classes of phytopathogenic fungi. The representative Mn4Na-complex acts as a catalyst in the cycloaddition of CO2 to epoxides under solvent-free conditions to form cyclic carbonates in good yields.

4.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 5): 508-511, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37151833

RESUMEN

In the polymeric title compound, {[Na(C10H9N4O4S)(H2O)3]·2H2O} n , sixfold coordinated Na+ cations are linked into a chain parallel to [010] by sharing common water mol-ecules. Next to the four bridging water mol-ecules, each Na+ cation of the chain is bonded to the O atom of a terminal water mol-ecule and an O atom of the SO3 - group of the sulfonate anion. Classical O-H⋯O, O-H⋯N and N-H⋯O hydrogen bonds and additional π-π inter-actions connect these chains into a three-dimensional network.

5.
Faraday Discuss ; 244(0): 77-95, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37089087

RESUMEN

The chalcogen bond (ChB) is a noncovalent attraction between an electrophilic chalcogen atom and a nucleophilic (Nu) region in the same (intramolecular) or another (intermolecular) molecular entity: R-Ch⋯Nu (Ch = O, S, Se or Te; R = substituents; Nu = nucleophile). ChB is comparable to the hydrogen and halogen bonds both in terms of strengths and directionality. However, in contrast to the monovalent halogen atoms, usually the divalent or tetravalent chalcogen atoms are able to display more than one electrophilic centre (on account of the existence of two or three species bonded to the chalcogen atom), which provides an additional opportunity in the use of this type of noncovalent binding in synthetic operations. In this work, the role of ChB at the secondary coordination sphere of metal complexes through copper(II)-mediated activation of dioxygen or of one nitrile group of a 1,2,5-selenadiazole-3,4-dicarbonitrile ligand to form a carbimidate or an imino-carboxylic acid is demonstrated. DFT calculations allowed evaluation of the strength of the ChBs and proved their relevant structure directing role in the solid state architectures. The effect of metal-coordination on the σ-hole opposite to the coordinated SeO bond has been analysed using molecular electrostatic potential (MEP) surfaces and explains the greater ability of the coordinated selenoxide derivatives to form strong ChBs.

6.
Dalton Trans ; 51(3): 1019-1031, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34935834

RESUMEN

A solvothermal reaction of Cd(II) with the dicarboxyl-functionalized arylhydrazone pro-ligands, 5-(2-(2,4,6-trioxotetrahydro-pyrimidin-5(2H)-ylidene)hydrazineyl)isophthalic acid (H5L1) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)isophthalic acid (H3L2), or their halogen bond donor centre(s) decorated analogs 2,4,6-triiodo-5-(2-(2,4,6-trioxotetrahydropyrimidin-5(2H)-ylidene)hydrazineyl)isophthalic acid (H5L3) and 5-(2-(2,4-dioxopentan-3-ylidene)hydrazineyl)-2,4,6-triiodoisophthalic acid (H3L4), leads to the formation of known [Cd(H3L1)(H2O)2]n (1) and new {[Cd(HL2)(H2O)2(DMF)]·H2O}n (2), [Cd(H3L3)]n (3) and {[Cd2(µ-H2O)2(µ-H2L4)2(H2L4)2]·2H2O}n (4) coordination compounds, respectively. The aggregation of mononuclear units via Cd-OC and Cd-OH2 coordination and CAr-I⋯I types of intramolecular halogen bonds lead to a dinuclear tecton 4. Both CAr-I⋯O and CAr-I⋯I types of intermolecular halogen bonds play a fundamental role in the supramolecular architectures of the obtained metal-organic frameworks 3 and 4. Theoretical (DFT) calculations confirmed the presence of the CAr-I⋯O and CAr-I⋯I halogen bonds in 3 and 4 and allowed their characterisation. The formation of intermolecular noncovalent interactions between the attached iodine substituents to the hydrazone ligands and polar solvent (water or methanol) molecules promoted, at least in part, the solubility of the corresponding complexes (3 and 4), which act as homogeneous catalyst precursors in the Henry reaction between aldehydes and nitroethane. The corresponding ß-nitroalkanol products were obtained in good yields (66-79%) and with good diastereoselectivity (threo/erythro ca. 72 : 28) in water at room temperature.

7.
Chemistry ; 27(58): 14370-14389, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34363268

RESUMEN

Lanthanide complexes have attracted a widespread attention due to their structural diversity, as well as multifunctional and tunable properties. The development of lanthanide based functional materials has often relied on the design of the secondary coordination sphere of the corresponding lanthanide complexes. For instance, usually simple lanthanide salts (solvento complexes) do not catalyze effectively organic reactions or provide low yield of the expected product, whereas the presence of a suitable organic ligand with a noncovalent bond donor or acceptor centre (secondary coordination sphere) modifies the symmetry around the metal centre in lanthanide complexes which then successfully can act as catalysts in both homogenous and heterogenous catalysis. In this minireview, we discuss several relevant examples, based on X-ray crystal structure analyses, in which the hydrogen, halogen, chalcogen, pnictogen, tetrel and rare-earth bonds, as well as cation-π, anion-π, lone pair-π, π-π and pancake interactions, are used as a synthon in the decoration of the secondary coordination sphere of lanthanide complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...