Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 30(3): 554-563, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37787999

RESUMEN

PURPOSE: Brain metastases (BM) are mainly treated palliatively with an expected survival of less than 12 months after diagnosis. In many solid tumors, the human neural stem cell marker glycoprotein CD133 is a marker of a tumor-initiating cell population that contributes to therapy resistance, relapse, and metastasis. EXPERIMENTAL DESIGN: Here, we use a variant of our previously described CD133 binder to generate second-generation CD133-specific chimeric antigen receptor T cells (CAR-T) to demonstrate its specificity and efficacy against multiple patient-derived BM cell lines with variable CD133 antigen expression. RESULTS: Using both lung- and colon-BM patient-derived xenograft models, we show that a CD133-targeting CAR-T cell therapy can evoke significant tumor reduction and survival advantage after a single dose, with complete remission observed in the colon-BM model. CONCLUSIONS: In summary, these data suggest that CD133 plays a critical role in fueling the growth of BM, and immunotherapeutic targeting of this cell population is a feasible strategy to control the outgrowth of BM tumors that are otherwise limited to palliative care. See related commentary by Sloan et al., p. 477.


Asunto(s)
Neoplasias Encefálicas , Receptores Quiméricos de Antígenos , Humanos , Ensayos Antitumor por Modelo de Xenoinjerto , Recurrencia Local de Neoplasia/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Linfocitos T , Línea Celular Tumoral , Antígeno AC133/metabolismo
2.
Plants (Basel) ; 11(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684226

RESUMEN

Genome targeting with CRISPR/Cas9 is a popular method for introducing mutations and creating knock-out effects. However, limited information is currently available on the mutagenesis of essential genes. This study investigated the efficiency of CRISPR/Cas9 in targeting rice essential genes: the singleton TARGET OF RAPAMYCIN (OsTOR) and the three paralogs of the Sucrose non-fermenting-1 (SNF1)-related kinase 1 (OsSnRK1α), OsSnRK1αA, OsSnRK1αB and OsSnRK1αC. Strong activity of constitutively expressed CRISPR/Cas9 was effective in creating mutations in OsTOR and OsSnRK1α genes, but inducible CRISPR/Cas9 failed to generate detectable mutations. The rate of OsTOR mutagenesis was relatively lower and only the kinase domain of OsTOR could be targeted, while mutations in the HEAT region were unrecoverable. OsSnRK1α paralogs could be targeted at higher rates; however, sterility or early senescence was observed in >50% of the primary mutants. Additionally, OsSnRK1αB and OsSnRK1αC, which bear high sequence homologies, could be targeted simultaneously to generate double-mutants. Further, although limited types of mutations were found in the surviving mutants, the recovered lines displayed loss-of-function or knockdown tor or snrk1 phenotypes. Overall, our data show that mutations in these essential genes can be created by CRISPR/Cas9 to facilitate investigations on their roles in plant development and environmental response in rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...