Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 266(Pt 2): 131394, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582469

RESUMEN

This study aimed to fabricate a series of biodegradable hydrogel films by gelating/physically crosslinking a blend of xanthan gum (XG) and chitosan (CS) in various combinations using a facile, green, and low cost solution casting technique. The adsorption of Cd2+, Cu2+ and Ni2+ by the XG/CS biofilm in aqueous solution was studied in batch experiments to determine how the pH of the solution, contact time, dosage of adsorbent, initial metal ion concentration and ionic strength affect its adsorption. A highly pH-dependent adsorption process was observed for three metal ions. A maximum amount of Cd2+, Ni2+, and Cu2+ ions was adsorbable with 50 mg of the adsorbent at pH 6.0 for an initial metal concentration of 50 mg.L-1. An empirical pseudo-second-order model seems to fit the kinetic experimental data reasonably well. It was found that the Langmuir model correlated better with equilibrium isotherm when compared with the Freundlich model. For Cd2+, Ni2+, and Cu2+ ions at 25 °C, the maximum monolayer adsorption capacity was 152.33, 144.79, and 139.71 mg.g-1, respectively. Furthermore, the biofilm was capable of regenerating, allowing metal ions to adsorb and desorb for five consecutive cycles. Therefore, the developed biodegradable film offers the potential for remediation of specified metal ions.


Asunto(s)
Biopelículas , Quitosano , Hidrogeles , Polisacáridos Bacterianos , Contaminantes Químicos del Agua , Adsorción , Cadmio/química , Quitosano/química , Cobre/química , Hidrogeles/química , Concentración de Iones de Hidrógeno , Cinética , Níquel/química , Polisacáridos Bacterianos/química , Soluciones , Agua/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
2.
Carbohydr Polym ; 330: 121819, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368101

RESUMEN

This paper presents the rational design and novel synthesis of multifunctional nanocomposite hydrogel derived from xanthan gum (XG) modified with silica nanoparticles and partially hydrolyzed polyacrylamide (HPAM) via H-bonding interactions (self-assembly) through the "green" gelation process in water. Different techniques have been employed to characterize HPAM/SiO2@XG, including FT-IR, FE-SEM, XRD, TEM, BET, and TG/DTG as well as swelling kinetics. Crystal violet (CV)'s adsorption performance was investigated using batch experiments by varying various variables involving adsorbent composition, pH, adsorbent quantity, contact time, CV concentration, ionic strength, and temperature. A well-fitting Langmuir isotherm was found for the adsorption data at 30 °C and pH 7.0, yielding 342.19 mg CV/g as the equilibrium state's maximum adsorption (qm). CV adsorption data agreed better with the pseudo-second-order model than other kinetic models. Furthermore, the HPAM/SiO2@XG nanocomposite hydrogel showed a significant increase in adsorption capacity over the SiO2@XG hydrogel precursor. According to thermodynamic analysis, CV adsorbs to HPAM/XG@SiO2 spontaneously and exothermically. Our results showed that the nanocomposite hydrogel's functional groups interact with CV predominantly through electrostatic interactions, coupled with H-bonding. Nanocomposite hydrogel has been regenerated using a five-cycle adsorption-desorption process, and the efficiency of CV removal has remained a satisfactory level of removal efficiency (94.5 % to 71.5 %).

3.
Int J Biol Macromol ; 253(Pt 1): 126585, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37659481

RESUMEN

Our objective in this study is to fabricate a novel chitosan-based ternary nanocomposite hydrogel film by incorporating graphene oxide (GO) nanosheets into a chitosan/partially hydrolyzed polyacrylamide (PHPA) network to boost adsorption efficiency through one step self-assembly process in water. Basically, H-bonding interactions drive the formation of a crosslinking network structure. The Batch adsorption experiments evaluated the hydrogel nanocomposite's MB adsorption performance. By loading GO, surface roughness, swelling percentage (from 21,200 % to 35,800 %), elastic modulus of up to 73.7 Pa, and adsorption characteristics (from 282 mg/g to 468 mg/g) were enhanced. The nanocomposite displayed outstanding thermally/pH responsiveness properties. MB adsorption equilibrium was reached after 45 min and the adsorption capacity was 476.19 mg.g-1 when the initial concentration was 100 mg/L. The MB adsorption kinetics and isotherms by the nanocomposite were well correlated by the PSO and the Langmuir models (R2 > 0.99), respectively. The loaded nanocomposite was shown to be regenerative for five cycles through desorption studies. Thermodynamic analysis indicated that MB adsorption occurred spontaneously (ΔG°: -16.47 kJ/mol, 303 K) and exothermically (ΔH°: -79.49 kJ/mol). A plausible adsorption mechanism was proposed for the nanocomposite developed for MB removal. Our results can contribute to the design and fabrication of nanocomposite adsorbents to treat wastewater.


Asunto(s)
Quitosano , Nanocompuestos , Contaminantes Químicos del Agua , Nanogeles , Quitosano/química , Azul de Metileno/química , Nanocompuestos/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
4.
ChemSusChem ; 9(15): 1929-37, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27357330

RESUMEN

A simple and practical approach is introduced for the deposition of CuI as an inexpensive inorganic hole-transport material (HTM) for the fabrication of low cost perovskite solar cells (PSCs) by gas-solid phase transformation of Cu to CuI. The method provides a uniform and well-controlled CuI layer with large grains and good compactness that prevents the direct connection between the contact electrodes. Solar cells prepared with CuI as the HTM with Au electrodes displays an exceptionally high short-circuit current density of 32 mA cm(-2) , owing to an interfacial species formed between the perovskite and the Cu resulting in a long wavelength contribution to the incident photon-to-electron conversion efficiency (IPCE), and an overall power conversion efficiency (PCE) of 7.4 %. The growth of crystalline and uniform CuI on a low roughness perovskite layer leads to remarkably high charge extraction in the cells, which originates from the high hole mobility of CuI in addition to a large number of contact points between CuI and the perovskite layer. In addition, the solvent-free method has no damaging side effect on the perovskite layer, which makes it an appropriate method for large scale applications of CuI in perovskite solar cells.


Asunto(s)
Compuestos de Calcio/química , Cobre/química , Suministros de Energía Eléctrica , Yoduros/química , Óxidos/química , Energía Solar , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA