Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182797

RESUMEN

Wavefront analysis is a fast and reliable technique for the alignment and characterization of optics in the visible, but also in the extreme ultraviolet (EUV) and X-ray regions. However, the technique poses a number of challenges when used for optical systems with numerical apertures (NA) > 0.1. A high-numerical-aperture Hartmann wavefront sensor was employed at the free electron laser FLASH for the characterization of a Schwarzschild objective. These are widely used in EUV to achieve very small foci, particularly for photolithography. For this purpose, Schwarzschild objectives require highly precise alignment. The phase measurements acquired with the wavefront sensor were analyzed employing two different methods, namely, the classical calculation of centroid positions and Fourier demodulation. Results from both approaches agree in terms of wavefront maps with negligible degree of discrepancy.

2.
Opt Lett ; 45(15): 4248-4251, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735269

RESUMEN

We present a novel, to the best of our knowledge, Hartmann wave front sensor for extreme ultraviolet (EUV) spectral range with a numerical aperture (NA) of 0.15. The sensor has been calibrated using an EUV radiation source based on gas high harmonic generation. The calibration, together with simulation results, shows an accuracy beyond λ/39 root mean square (rms) at λ=32nm. The sensor is suitable for wave front measurement in the 10 nm to 45 nm spectral regime. This compact wave front sensor is high-vacuum compatible and designed for in situ operations, allowing wide applications for up-to-date EUV sources or high-NA EUV optics.

3.
Opt Express ; 27(3): 2656-2670, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30732300

RESUMEN

We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to λ/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG).

4.
Opt Lett ; 43(9): 1947-1949, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714768

RESUMEN

We demonstrated by means of interferometry that optical vortices can be generated by diffraction of a laser beam from a birefringent nematic liquid crystal that spontaneously creates a periodic array of electro-convective domains and edge dislocations under an applied electric field. The diffracted beam of order m produced by an elementary dislocation comprises a number |m| of distinct optical vortices, each with unit topological charge. Birefringent liquid crystal arrays provide a fast, convenient, and promising way of generating and studying optical vortices. The used materials are inexpensive, fabrication processes are simple, and both input polarization and applied field can be used as external controls to switch the optical vortices on and off.

5.
Opt Lett ; 39(21): 6201-4, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25361314

RESUMEN

We report on the realization of a liquid crystal (LC)-based optical diffraction grating showing a polar symmetry of the director alignment. This has been obtained as a natural evolution of the POLICRYPS technique, which enables the realization of highly efficient, switchable, planar diffraction gratings. Performances exhibited in the Cartesian geometry are extended to the polar one by exploiting the spherical aberration produced by simple optical elements. This enables producing the required highly stable polar pattern that allows fabricating a circular optical diffraction grating. Results are promising for their possible application in fields in which a rotational structure of the optical beam is needed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...