Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Genet ; 65(2): 341-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38030871

RESUMEN

The coronavirus disease 2019 (COVID-19) was first found in Wuhan, China, in December 2019. Because the virus spreads quickly, it quickly became a global worry. Coronaviridae is the family that contains both SARS-CoV-2 and the viruses that came before (i.e., MERS-CoV and SARS-CoV). Recent sources portray that the COVID-19 virus has affected 344,710,576 people worldwide and killed about 5,598,511 people in the last 2 years. The B.1.1.529 strain, later called "Omicron," was named a Variant of Concern on November 24, 2021. The SARS-CoV-2 virus has gone through a never-ending chain of changes that have never happened before. As a result, it has many different traits. Most of these changes have occurred in the spike protein, where antibodies bind. Because of these changes, the Omicron type is very contagious and easy to pass on. There have been a lot of studies done to try to figure out this new challenge in the COVID-19 strains race, but there is still a lot that needs to be explained. This study focuses on virtual screening, docking, and molecular dynamic analysis; we aimed to identify therapeutic candidates for the SARS-CoV-2 variant Omicron based on their ability to inhibit non-structural proteins. We investigate the prediction of the properties of a substantial database of drug molecules obtained from the OliveNet™ database. Compounds that did not exhibit adequate gastrointestinal absorption and failed the Lipinski test are not considered for further research. The filtered compounds were coupled with our primary target, SARS-CoV-2 Omicron spike protein. We focused on SARS-CoV-2 Omicron spike protein and filtering potent olive compounds. Pinoresinol, the most likely candidate, is bound best (- 8.5 kcal/mol). Pinoresinol's strong interaction with the active site made the complex's dynamic structure more resilient. MD simulations explain the protein-ligand complex's stability and function. Pinoresinol may be a promising SARS-CoV-2 Omicron spike protein receptor lead drug, and additional research may assist the scientific community.


Asunto(s)
COVID-19 , Furanos , Lignanos , Olea , SARS-CoV-2 , Humanos , Simulación de Dinámica Molecular , Glicoproteína de la Espiga del Coronavirus
2.
Malays J Med Sci ; 27(5): 53-61, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33154702

RESUMEN

BACKGROUND: This study was undertaken to evaluate the preferred method (Giemsa or periodic acid Schiff-Alcian blue [PAS-AB] stains) of detecting Helicobacter pylori (H. pylori) in gastric mucosal biopsies in terms of sensitivity, specificity and applicability. To the best of my knowledge, this is the first report comparing Giemsa and PAS-AB staining for the detection of H. pylori in such biopsies. METHODS: The formalin-fixed paraffin-embedded blocks of 49 gastric biopsies from different patients were collected from the archive of anatomical pathology at King Abdulaziz Medical City, National Guard, Riyadh, Saudi Arabia. From each block, three slides were prepared and analysed using the hematoxylin and eosin (H&E), Giemsa and PAS-AB stains to detect the presence/absence of H. pylori, and the results were compared in terms of sensitivity, specificity and applicability. RESULTS: The majority of the biopsies in this study showed antrum-type gastric mucosa. Only 15 biopsies showed active gastritis, whereas the rest showed chronic gastritis. Three biopsies showed intestinal metaplasia. All were detected by PAS-AB stain, but only two-thirds were detected by H&E stain. Fifteen gastric biopsies showed H. pylori infection in general and in 13 of them, active gastritis cases were discovered. Fourteen out of these 15 H. pylori infection cases were detected by Giemsa stain, whereas only 13 cases were detected by H&E stain. PAS-AB stain showed the worst results since it demonstrated only 40% sensitivity and 67.65% specificity in H. pylori detection. CONCLUSION: Giemsa stain has better sensitivity and specificity in gastric H. pylori infection detection than PAS-AB. Therefore, using PAS-AB stain to detect H. pylori infection is not recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...