Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-11, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529847

RESUMEN

The serine/threonine kinase (STK) plays a central role as the primary kinase in poxviruses, directing phosphoryl transfer reactions. Such reactions are pivotal for the activation of certain proteins during viral replication, assembly, and maturation. Therefore, targeting this key protein is anticipated to impede virus replication. In this work, a structural bioinformatics approach was employed to evaluate the potential of drug-like kinase inhibitors in binding to the ATP-binding pocket on the STK of the Mpox virus. Virtual screening of known kinase inhibitors revealed that the top 10 inhibitors exhibited binding affinities ranging from -8.59 to -12.05 kcal/mol. The rescoring of compounds using the deep-learning default model in GNINA was performed to predict accurate binding poses. Subsequently, the top three inhibitors underwent unbiased molecular dynamics (MD) simulations for 100 ns. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analysis and Principal Component Analysis (PCA) suggested tepotinib as a competitive inhibitor for Mpox virus STK as evidenced by its binding free energy and the induction of similar conformational behavior of the enzyme. Nevertheless, it is sensible to experimentally test all top 10 compounds, as scoring functions and energy calculations may not consistently align with experimental findings. These insights are poised to provide an attempt to identify an effective inhibitor for the Mpox virus.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; : 1-12, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37846926

RESUMEN

Kinases catalyze phosphoryl transfer from a nucleoside triphosphate (usually ATP) to an amino acid on a protein for activation purposes. Although kinases are well-appreciated drug targets in different viruses and cancers, these enzymes in poxviruses received limited attention from the research community. In poxvirus, the production of infectious particles in the infected cells depends on a serine/threonine protein kinase (STK) that activates proteins implicated in the assembly of new virions. This work aimed to elucidate the structure and dynamics of the major kinase STK from Mpox virus (Orthopoxvirus). A state-of-the-art computational approach was employed to decipher the structure and dynamics of the STK using AlphaFold2 and molecular dynamics (MD) simulations. Although the predicted structure showed an atypical kinase, the overall structural fold is conserved. Binding free energy calculations via Molecular Mechanics/Generalized Born and Surface Area (MM/GBSA) determined the hotspot residues contributing to binding of ATP. The structural analysis in this work provides insights into the structure and behavior of STK in Mpox virus and possibly its closest members of Poxviridae. These findings also set the basis for setting up a thorough experimental investigation to understand the enzymatic mechanism, peptide substrate binding, and the development of small-molecule inhibitors against this kinase.Communicated by Ramaswamy H. Sarma.

3.
Comput Biol Chem ; 104: 107850, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907056

RESUMEN

Nipah virus (NiV) has been an alarming threat to human populations in southern Asia for more than a decade. It is one of the most deadly viruses in the Mononegavirales order. Despite its high mortality rate and virulence, no chemotherapeutic agent or vaccine is publicly available. Hence, this work was conducted to computationally screen marine natural products database for drug-like potential inhibitors for the viral RNA-dependent RNA polymerase (RdRp). The structural model was subjected to molecular dynamics (MD) simulation to obtain the native ensemble of the protein. The CMNPDB dataset of marine natural products was filtered to retain only compounds following Lipinski's five rules. The molecules were energy minimized and docked into different conformers of the RdRp using AutoDock Vina. The best 35 molecules were rescored by GNINA, a deep learning-based docking software. The resulting nine compounds were evaluated for their pharmacokinetic profiles and medicinal chemistry properties. The best five compounds were subjected to MD simulation for 100 ns, followed by binding free energy estimation via Molecular Mechanics/ Generalized Born Surface Area (MM/GBSA) calculations. The results showed remarkable behavior of five hits as inferred by stable binding pose and orientation to block the exit channel of RNA synthesis products in the RdRp cavity. These hits are promising starting materials for in vitro validation and structural modifications to enhance the pharmacokinetic and medicinal chemistry properties for developing antiviral lead compounds.


Asunto(s)
Productos Biológicos , Virus Nipah , Humanos , Virus Nipah/metabolismo , Productos Biológicos/farmacología , Inhibidores Enzimáticos/química , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN/metabolismo , Antivirales/farmacología , Antivirales/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Simulación del Acoplamiento Molecular
4.
J Biomol Struct Dyn ; 41(17): 8215-8229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36205638

RESUMEN

The large (L) protein of Mononegavirales is a multi-domain protein that performs transcription and genome replication. One of the important domains in L is the RNA-dependent RNA polymerase (RdRp), a promising target for antiviral drugs. In this work, we employed rigorous computational comparative modeling to predict the structure of L protein of Nipah virus (NiV). The RdRp domain was targeted by a panel of nucleotide analogs, previously reported to inhibit different viral RNA polymerases, using molecular docking. Best binder compounds were subjected to molecular dynamics simulation to validate their binding. Molecular mechanics/generalized-born surface area (MM/GBSA) calculations estimated the binding free energy. The predicted model of NiV L has an excellent quality as judged by physics- and knowledge-based validation tests. Galidesivir, AT-9010 and Norov-29 scored the top nucleotide analogs to bind to the RdRp. Their binding free energies obtained by MM/GBSA (-31.01 ± 3.9 to -38.37 ± 4.8 kcal/mol) ranked Norov-29 as the best potential inhibitor. Purine nucleotide analogs are expected to harbor the scaffold for an effective drug against NiV. Finally, this study is expected to provide a start point for medicinal chemistry and drug discovery campaigns toward identification of effective chemotherapeutic agent(s) against NiV.Communicated by Ramaswamy H. Sarma.

5.
Food Environ Virol ; 14(3): 246-257, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713790

RESUMEN

The objective of this study was to compare human adenoviruses (HAdVs) genome and infectivity, polyomaviruses (JC and BK) genome (JCPyVs) and (BKPyVs), Pepper Mild Mottle Virus (PMMoV) genome and infectivity, and infectious bacteriophages as viral indices for sewage and water samples. One hundred and forty-four samples were collected from inlets and outlets of water and wastewater treatment plants (WTPs), and WWTPs within Greater Cairo from October 2015 till March 2017. Two methods of viral concentration [Aluminium hydroxide (Al(OH)3) precipitation method and adsorption-elution technique followed by organic flocculation method] were compared to determine which of them was the best method to concentrate viruses from sewage and water. Although samples with only one litre volume were concentrated using Al(OH)3 precipitation method and the same samples with larger volumes (5-20 L) were concentrated using the adsorption-elution technique followed by the organic flocculation method, a non-significant difference was observed between the efficiency of the two methods in all types of samples except for the drinking water samples. Based on the qualitative prevalence of studied viruses in water and wastewater samples, the number of genome copies and infectious units in the same samples, resistance to treatment processes in water and wastewater treatment plants, higher frequency of both adenoviruses and PMMoV genomes as candidate viral indices in treated sewage and drinking water was observed. The problem of having a viral genome as indices of viral pollution is that it does not express the recent viral pollution because of the longer survivability of the viral genome than the infectious units in water and wastewater. Both infectious adenovirus and infectious phiX174 bacteriophage virus showed similar efficiencies as indices for viral pollution in drinking water and treated sewage samples. On the other hand, qualitative detection of infectious PMMoV failed to express efficiently the presence/absence of infectious enteric viruses in drinking water samples. Infectious adenoviruses and infectious bacteriophage phiX174 virus may be better candidates than adenoviruses genome, polyomaviruses genome, and PMMoV genome and infectivity as viral indices for water and wastewater.


Asunto(s)
Adenovirus Humanos , Agua Potable , Adenovirus Humanos/genética , Humanos , Aguas del Alcantarillado , Tobamovirus , Aguas Residuales , Microbiología del Agua
6.
PLoS One ; 17(6): e0269321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35767564

RESUMEN

Since 2000, two lineages of influenza B viruses, Victoria and Yamagata, have been circulating at similar frequencies worldwide. Little is known about the circulation of those viruses in Egypt. This study aims to describe the epidemiology of influenza B virus infections in Egypt, 2017-2019. This was performed through a household prospective cohort study on influenza infections among 2400 individuals from five villages. When a study participant had influenza like symptoms, a nasal swab and an oropharyngeal swab were obtained and tested by RT-PCR for influenza B infections. A serum sample was obtained from all participants annually to detect neutralizing antibodies using microneutralization assay. 9.1% of subjects were positive for influenza B viruses during season 2017-2018 mostly among preschoolers and 7.6% were positive during the season 2018-2019 with higher risk in females, potentially due to mothers being infected after contact with their children. The overall seroprevalence among the participants was 53.2% and 52.2% against the Victoria and Yamagata lineages respectively, the majority of seropositive participants were students. Multivariate analysis showed that age and having chronic diseases were the strongest predictors of infection. Our results show that both influenza B lineages circulated between 2017 and 2020 in Egypt almost in equal proportion. Encouraging the uptake of seasonal influenza vaccines is recommended.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Anticuerpos Neutralizantes , Niño , Estudios de Cohortes , Egipto/epidemiología , Femenino , Humanos , Incidencia , Virus de la Influenza B , Estudios Prospectivos , Estudios Seroepidemiológicos
7.
ACS Pharmacol Transl Sci ; 5(3): 177-178, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35295932

RESUMEN

The SARS-CoV-2 pandemic has caused the death of 5.5 million people and the infection of more than 323 million people as of January 2022. The remarkable increase in pathogenicity and virulence might have occurred as a result of viral RNA mutations. To date, few antiviral drugs have been authorized for emergency use, but not yet approved, to treat mild to moderate COVID-19, with serious drawbacks and side effects. Antimicrobial peptides (AMPs) play an important role in the host's innate and adaptive immune system against a wide range of microbial infections. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is thought to be used to increase the recombinant biosynthesis of AMPs. There have been studies that reported the production of AMPs using CRISPR. Therefore, CRISPR is expected to play an important role in the production of AMPs as next-generation, safe, affordable, and efficient antiviral drugs in general and for the treatment of COVID-19 in particular, in addition to AMPs being efficient immunomodulators.

8.
Biomolecules ; 11(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680148

RESUMEN

Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.


Asunto(s)
Dicetopiperazinas/química , Dipéptidos/química , Neoplasias/tratamiento farmacológico , Prolina/química , Dicetopiperazinas/uso terapéutico , Dipéptidos/genética , Dipéptidos/uso terapéutico , Descubrimiento de Drogas , Humanos , Neoplasias/genética , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Péptidos Cíclicos/uso terapéutico , Prolina/genética , Prolina/uso terapéutico
9.
Pathogens ; 10(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808583

RESUMEN

Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.

10.
Molecules ; 26(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467522

RESUMEN

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Asunto(s)
Antiinfecciosos/farmacología , Antivirales/farmacología , Péptidos/química , Péptidos/farmacología , Péptidos/uso terapéutico , Aminoácidos/química , Antiinfecciosos/química , Antivirales/química , Simulación por Computador , Cosmecéuticos/química , Cosmecéuticos/uso terapéutico , Suplementos Dietéticos , Técnicas de Transferencia de Gen , Humanos , Lactoferrina/química , Membrana Dobles de Lípidos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Péptidos/administración & dosificación , Células Madre , Vacunas de Subunidad/química , Vacunas de Subunidad/farmacología , Tratamiento Farmacológico de COVID-19
11.
ACS Pharmacol Transl Sci ; 3(4): 780-782, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32821884

RESUMEN

COVID-19 is currently considered as a life-threatening pandemic viral infection. Finding an antiviral drug or a vaccine is the only route for humans' survival against it. To date, no specific antiviral treatment has been confirmed. Antimicrobial peptides (AMPs) have been widely regarded as a promising solution to combat harmful microorganisms. They are biologically active molecules produced by different organisms as an essential component of their innate immune response against invading pathogens. Lactoferrin (LF), one of the AMPs, is an iron-binding glycoprotein that is present in several mucosal secretions. The antiviral activity of LF exists against a wide range of human and animal viruses (DNA and RNA). LF was proven to increase the host immunity against viral infection. Since LF is one of the constituents of breast milk and significantly located at the mucosal layers of the human body, it is considered the first line of defense against microbial infection. LF was reported to have antiviral activity against SARS-CoV infection. The significant antiviral activity of LF makes it a potential option as an immunity enhancer, a drug or a drug conjugate with conventional antivirals. The affordability, environmental safety, and efficiency of LFs will make them superior to all other control strategies.

12.
Viruses ; 11(11)2019 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-31717865

RESUMEN

The surveillance and virological characterization of H5N8 avian influenza viruses are important in order to assess their zoonotic potential. The genetic analyses of the Egyptian H5N8 viruses isolated through active surveillance in wild birds and domestic poultry in the winter of 2016/2017 showed multiple introductions of reassortant viruses. In this study, we investigated and compared the growth kinetics, infectivity, and pathogenicity of the three reassortant forms of H5N8 viruses detected in wild birds and domestic poultry in Egypt during the first introduction wave in the winter of 2016/2017. Three representative H5N8 viruses (abbreviated as 813, 871, and 13666) were selected. The 871/H5N8 virus showed enhanced growth properties in vitro in Madin Darby canine kidney (MDCK) and A549 cells. Interestingly, all viruses replicated well in mice without prior adaptation. Infected C57BL/6 mice showed 20% mortality for 813/H5N8 and 60% mortality for 871/H5N8 and 13666/H5N8, which could be attributed to the genetic differences among the viruses. Studies on the pathogenicity in experimentally infected ducks revealed a range of pathogenic effects, with mortality rate ranging from 0% for 813/H5N8 and 13666/H5N8 to 28% for 871/H5N8. No significant differences were observed among the three compared viruses in infected chickens. Overall, different H5N8 viruses had variable biological characteristics, indicating a continuous need for surveillance and virus characterization efforts.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Animales , Animales Salvajes/virología , Aves/virología , Pollos/virología , Patos/virología , Egipto/epidemiología , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/genética , Ratones , Ratones Endogámicos C57BL , Filogenia , Aves de Corral , Virus Reordenados/clasificación , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Virus Reordenados/patogenicidad , Estaciones del Año , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...